summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDan Goodliffe <dan@randomdan.homeip.net>2024-09-20 20:27:51 +0100
committerDan Goodliffe <dan@randomdan.homeip.net>2024-09-20 20:27:51 +0100
commit9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f (patch)
tree80eb3be43b8552282ab8cc2ab7756ee0a164c456
parentAdd basic environment object (diff)
downloadilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.tar.bz2
ilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.tar.xz
ilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.zip
Move getSunPos to Environment
-rw-r--r--game/environment.cpp67
-rw-r--r--game/environment.h2
-rw-r--r--test/test-environment.cpp70
3 files changed, 71 insertions, 68 deletions
diff --git a/game/environment.cpp b/game/environment.cpp
index fd2bfd4..665c11b 100644
--- a/game/environment.cpp
+++ b/game/environment.cpp
@@ -16,3 +16,70 @@ Environment::render(const SceneRenderer & renderer, const SceneProvider & scene)
renderer.setAmbientLight({0.5F, 0.5F, 0.5F});
renderer.setDirectionalLight({0.6F, 0.6F, 0.6F}, {-1, 1, -1}, scene);
}
+
+// Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm
+// Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy
+Direction2D
+Environment::getSunPos(const Direction2D position, const time_t time)
+{
+ auto & longitude = position.x;
+ auto & latitude = position.y;
+ using std::acos;
+ using std::asin;
+ using std::atan2;
+ using std::cos;
+ using std::floor;
+ using std::sin;
+ using std::tan;
+ static const auto JD2451545 = "2000-01-01T12:00:00"_time_t;
+
+ // Calculate difference in days between the current Julian Day
+ // and JD 2451545.0, which is noon 1 January 2000 Universal Time
+ // Calculate time of the day in UT decimal hours
+ const auto dDecimalHours = static_cast<float>(time % 86400) / 3600.F;
+ const auto dElapsedJulianDays = static_cast<float>(time - JD2451545) / 86400.F;
+
+ // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the
+ // ecliptic in radians but without limiting the angle to be less than 2*Pi
+ // (i.e., the result may be greater than 2*Pi)
+ const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays;
+ const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians
+ const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays;
+ const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly)
+ + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega);
+ const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega);
+
+ // Calculate celestial coordinates ( right ascension and declination ) in radians
+ // but without limiting the angle to be less than 2*Pi (i.e., the result may be
+ // greater than 2*Pi)
+ const auto dSin_EclipticLongitude = sin(dEclipticLongitude);
+ const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude;
+ const auto dX = cos(dEclipticLongitude);
+ auto dRightAscension = atan2(dY, dX);
+ if (dRightAscension < 0) {
+ dRightAscension = dRightAscension + two_pi;
+ }
+ const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude);
+
+ // Calculate local coordinates ( azimuth and zenith angle ) in degrees
+ const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours;
+ const auto dLocalMeanSiderealTime
+ = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads;
+ const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension;
+ const auto dLatitudeInRadians = latitude;
+ const auto dCos_Latitude = cos(dLatitudeInRadians);
+ const auto dSin_Latitude = sin(dLatitudeInRadians);
+ const auto dCos_HourAngle = cos(dHourAngle);
+ Direction2D udtSunCoordinates;
+ udtSunCoordinates.y
+ = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude));
+ udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle);
+ if (udtSunCoordinates.x < 0) {
+ udtSunCoordinates.x = udtSunCoordinates.x + two_pi;
+ }
+ // Parallax Correction
+ const auto dParallax = (earthMeanRadius / astronomicalUnit) * sin(udtSunCoordinates.y);
+ udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax);
+
+ return udtSunCoordinates;
+}
diff --git a/game/environment.h b/game/environment.h
index 62eedb8..a6f3036 100644
--- a/game/environment.h
+++ b/game/environment.h
@@ -1,5 +1,6 @@
#pragma once
+#include "config/types.h"
#include "worldobject.h"
class SceneRenderer;
@@ -10,6 +11,7 @@ public:
Environment();
void tick(TickDuration elapsed) override;
void render(const SceneRenderer &, const SceneProvider &) const;
+ static Direction2D getSunPos(const Direction2D position, const time_t time);
private:
time_t worldTime;
diff --git a/test/test-environment.cpp b/test/test-environment.cpp
index 0e9e37a..b6e0e4f 100644
--- a/test/test-environment.cpp
+++ b/test/test-environment.cpp
@@ -6,75 +6,9 @@
#include <chronology.h>
#include <config/types.h>
+#include <game/environment.h>
#include <maths.h>
-// Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm
-// Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy
-Direction2D
-getSunPos(const Direction2D position, const time_t time)
-{
- auto & longitude = position.x;
- auto & latitude = position.y;
- using std::acos;
- using std::asin;
- using std::atan2;
- using std::cos;
- using std::floor;
- using std::sin;
- using std::tan;
- static const auto JD2451545 = "2000-01-01T12:00:00"_time_t;
-
- // Calculate difference in days between the current Julian Day
- // and JD 2451545.0, which is noon 1 January 2000 Universal Time
- // Calculate time of the day in UT decimal hours
- const auto dDecimalHours = static_cast<float>(time % 86400) / 3600.F;
- const auto dElapsedJulianDays = static_cast<float>(time - JD2451545) / 86400.F;
-
- // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the
- // ecliptic in radians but without limiting the angle to be less than 2*Pi
- // (i.e., the result may be greater than 2*Pi)
- const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays;
- const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians
- const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays;
- const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly)
- + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega);
- const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega);
-
- // Calculate celestial coordinates ( right ascension and declination ) in radians
- // but without limiting the angle to be less than 2*Pi (i.e., the result may be
- // greater than 2*Pi)
- const auto dSin_EclipticLongitude = sin(dEclipticLongitude);
- const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude;
- const auto dX = cos(dEclipticLongitude);
- auto dRightAscension = atan2(dY, dX);
- if (dRightAscension < 0) {
- dRightAscension = dRightAscension + two_pi;
- }
- const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude);
-
- // Calculate local coordinates ( azimuth and zenith angle ) in degrees
- const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours;
- const auto dLocalMeanSiderealTime
- = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads;
- const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension;
- const auto dLatitudeInRadians = latitude;
- const auto dCos_Latitude = cos(dLatitudeInRadians);
- const auto dSin_Latitude = sin(dLatitudeInRadians);
- const auto dCos_HourAngle = cos(dHourAngle);
- Direction2D udtSunCoordinates;
- udtSunCoordinates.y
- = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude));
- udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle);
- if (udtSunCoordinates.x < 0) {
- udtSunCoordinates.x = udtSunCoordinates.x + two_pi;
- }
- // Parallax Correction
- const auto dParallax = (earthMeanRadius / astronomicalUnit) * sin(udtSunCoordinates.y);
- udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax);
-
- return udtSunCoordinates;
-}
-
using sunPosTestData = std::tuple<Direction2D, time_t, Direction2D>;
constexpr Direction2D Doncaster = {-1.1, 53.5};
constexpr Direction2D NewYork = {74.0, 40.7};
@@ -95,7 +29,7 @@ BOOST_DATA_TEST_CASE(sun_position,
}),
position, timeOfYear, expSunPos)
{
- const auto sunPos = getSunPos(position * degreesToRads, timeOfYear) / degreesToRads;
+ const auto sunPos = Environment::getSunPos(position * degreesToRads, timeOfYear) / degreesToRads;
BOOST_CHECK_CLOSE(sunPos.x, expSunPos.x, 1.F);
BOOST_CHECK_CLOSE(sunPos.y, expSunPos.y, 1.F);
}