diff options
author | Dan Goodliffe <dan@randomdan.homeip.net> | 2021-02-28 15:42:39 +0000 |
---|---|---|
committer | Dan Goodliffe <dan@randomdan.homeip.net> | 2021-02-28 15:42:39 +0000 |
commit | d63f5ce1cb86e69da28bd74b21e9452dbd88a38f (patch) | |
tree | 0c9495f8cb5af05e6068b69d5d57551cc2331a97 /utility/maths.cpp | |
parent | Just use addLinksBetween (diff) | |
download | ilt-d63f5ce1cb86e69da28bd74b21e9452dbd88a38f.tar.bz2 ilt-d63f5ce1cb86e69da28bd74b21e9452dbd88a38f.tar.xz ilt-d63f5ce1cb86e69da28bd74b21e9452dbd88a38f.zip |
Move utility to lib
Diffstat (limited to 'utility/maths.cpp')
-rw-r--r-- | utility/maths.cpp | 128 |
1 files changed, 0 insertions, 128 deletions
diff --git a/utility/maths.cpp b/utility/maths.cpp deleted file mode 100644 index 543c887..0000000 --- a/utility/maths.cpp +++ /dev/null @@ -1,128 +0,0 @@ -#include "maths.h" -#include <cmath> -#include <glm/glm.hpp> -#include <glm/gtx/rotate_vector.hpp> -#include <glm/gtx/transform.hpp> -#include <stdexcept> - -glm::mat4 -flat_orientation(const glm::vec3 & diff) -{ - static const auto oneeighty {glm::rotate(pi, up)}; - const auto flatdiff {glm::normalize(glm::vec3 {diff.x, 0, diff.z})}; - auto e {glm::orientation(flatdiff, north)}; - // Handle if diff is exactly opposite to north - return (std::isnan(e[0][0])) ? oneeighty : e; -} - -float -vector_yaw(const glm::vec3 & diff) -{ - return std::atan2(diff.x, diff.z); -} - -float -vector_pitch(const glm::vec3 & diff) -{ - return std::atan(diff.y); -} - -float -round_frac(const float & v, const float & frac) -{ - return std::round(v / frac) * frac; -} - -float -normalize(float ang) -{ - while (ang > pi) { - ang -= two_pi; - } - while (ang <= -pi) { - ang += two_pi; - } - return ang; -} - -Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : - Arc([&]() -> Arc { - const auto diffa = e0p - centre3; - const auto diffb = e1p - centre3; - const auto anga = vector_yaw(diffa); - const auto angb = [&diffb, &anga]() { - const auto angb = vector_yaw(diffb); - return (angb < anga) ? angb + two_pi : angb; - }(); - return {anga, angb}; - }()) -{ -} - -std::pair<glm::vec2, bool> -find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) -{ - if (as == bs) { - return {as, false}; - } - const auto perps = entrys + half_pi; - const auto perpe = entrye - half_pi; - const glm::vec2 ad {std::sin(perps), std::cos(perps)}; - const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; - return find_arc_centre(as, ad, bs, bd); -} - -std::pair<glm::vec2, bool> -find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd) -{ - const auto det = bd.x * ad.y - bd.y * ad.x; - if (det != 0) { // near parallel line will yield noisy results - const auto d = bs - as; - const auto u = (d.y * bd.x - d.x * bd.y) / det; - return {as + ad * u, u < 0}; - } - throw std::runtime_error("no intersection"); -} - -std::pair<float, float> -find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye) -{ - const auto getrad = [&](float leftOrRight) { - const auto perps = entrys + leftOrRight; - const auto perpe = entrye + leftOrRight; - const glm::vec2 ad {std::sin(perps), std::cos(perps)}; - const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; - return find_arcs_radius(start, ad, end, bd); - }; - return {getrad(-half_pi), getrad(half_pi)}; -} - -float -find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd) -{ - // Short name functions for big forula - auto sq = [](auto v) { - return v * v; - }; - auto sqrt = [](float v) { - return std::sqrt(v); - }; - - // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r - // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 - // According to symbolabs.com equation tool, that solves for r to give: - // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 - // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y - // W+W^(2)-4)) - - // These exist cos limitations of online formula rearrangement, and I'm OK with that. - const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; - const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; - - return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W - - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W - - 2 * p * W) - - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) - * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) - / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); -} |