1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
#ifndef MATH_H
#define MATH_H
#include <cmath>
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include <utility>
struct Arc : public std::pair<float, float> {
using std::pair<float, float>::pair;
Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p);
float
operator[](unsigned int i) const
{
return i ? second : first;
}
};
constexpr const glm::vec3 up {0, 1, 0};
constexpr const glm::vec3 north {0, 0, 1};
constexpr const glm::vec3 south {0, 0, -1};
constexpr const glm::vec3 east {-1, 0, 0};
constexpr const glm::vec3 west {1, 0, 0};
constexpr auto half_pi {glm::half_pi<float>()};
constexpr auto quarter_pi {half_pi / 2};
constexpr auto pi {glm::pi<float>()};
constexpr auto two_pi {glm::two_pi<float>()};
glm::mat4 flat_orientation(const glm::vec3 & diff);
// C++ wrapper for C's sincosf, but with references, not pointers
inline auto
sincosf(float a, float & s, float & c)
{
return sincosf(a, &s, &c);
}
inline glm::vec2
sincosf(float a)
{
glm::vec2 sc;
sincosf(a, sc.x, sc.y);
return sc;
}
glm::mat2 rotate_flat(float);
glm::mat4 rotate_roll(float);
glm::mat4 rotate_yaw(float);
glm::mat4 rotate_pitch(float);
glm::mat4 rotate_ypr(glm::vec3);
float vector_yaw(const glm::vec3 & diff);
float vector_pitch(const glm::vec3 & diff);
float round_frac(const float & v, const float & frac);
template<typename T>
inline constexpr auto
sq(T v)
{
return v * v;
}
template<typename R = float, typename Ta, typename Tb>
inline constexpr auto
rdiv(Ta a, Tb b)
{
return ((R)a / (R)b);
}
constexpr inline glm::vec2
operator!(const glm::vec3 & v)
{
return {v.x, v.z};
}
constexpr inline glm::vec3
operator^(const glm::vec2 & v, float y)
{
return {v.x, y, v.y};
}
constexpr inline glm::vec3
operator!(const glm::vec2 & v)
{
return v ^ 0.F;
}
constexpr inline float
arc_length(const Arc & arc)
{
return arc.second - arc.first;
}
float normalize(float ang);
std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 start, float entrys, glm::vec2 end, float entrye);
std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd);
std::pair<float, float> find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye);
float find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd);
// Conversions
template<typename T>
inline constexpr float
mph_to_ms(T v)
{
return v / 2.237;
}
template<typename T>
inline constexpr float
kph_to_ms(T v)
{
return v / 3.6;
}
// ... literals are handy for now, probably go away when we load stuff externally
float operator"" _mph(const long double v);
float operator"" _kph(const long double v);
#endif
|