1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#include "maths.h"
#include <cmath>
#include <glm/glm.hpp>
#include <glm/gtx/rotate_vector.hpp>
#include <glm/gtx/transform.hpp>
Arc::Arc(const RelativePosition2D & dir0, const RelativePosition2D & dir1) :
Arc {vector_yaw(dir0), vector_yaw(dir1)} { }
Arc::Arc(const Angle anga, const Angle angb) : pair {anga, (angb < anga) ? angb + two_pi : angb} { }
glm::mat4
flat_orientation(const Direction3D & diff)
{
static const auto oneeighty {glm::rotate(pi, up)};
const auto flatdiff {glm::normalize(diff.xy() || 0.F)};
auto e {glm::orientation(flatdiff, north)};
// Handle if diff is exactly opposite to north
return (std::isnan(e[0][0])) ? oneeighty : e;
}
// Helper to lookup into a matrix given an xy vector coordinate
template<typename M, typename I>
inline auto &
operator^(M & m, glm::vec<2, I> xy)
{
return m[xy.x][xy.y];
}
// Create a matrix for the angle, given the targets into the matrix
template<typename M, typename I>
inline auto
rotation(typename M::value_type a, glm::vec<2, I> c1, glm::vec<2, I> s1, glm::vec<2, I> c2, glm::vec<2, I> ms2)
{
M m(1);
sincosf(a, m ^ s1, m ^ c1);
m ^ c2 = m ^ c1;
m ^ ms2 = -(m ^ s1);
return m;
}
// Create a flat (2D) transformation matrix
glm::mat2
rotate_flat(float a)
{
return rotation<glm::mat2, glm::length_t>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
}
// Create a yaw transformation matrix
glm::mat4
rotate_yaw(float a)
{
return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
}
// Create a roll transformation matrix
glm::mat4
rotate_roll(float a)
{
return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
}
// Create a pitch transformation matrix
glm::mat4
rotate_pitch(float a)
{
return rotation<glm::mat4, glm::length_t>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
}
// Create a combined yaw, pitch, roll transformation matrix
glm::mat4
rotate_ypr(Rotation3D a)
{
return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z);
}
glm::mat4
rotate_yp(Rotation2D a)
{
return rotate_yp(a.y, a.x);
}
glm::mat4
rotate_yp(Angle yaw, Angle pitch)
{
return rotate_yaw(yaw) * rotate_pitch(pitch);
}
float
vector_yaw(const Direction2D & diff)
{
return std::atan2(diff.x, diff.y);
}
float
vector_pitch(const Direction3D & diff)
{
return std::atan(diff.z);
}
float
round_frac(const float & v, const float & frac)
{
return std::round(v / frac) * frac;
}
float
normalize(float ang)
{
while (ang > pi) {
ang -= two_pi;
}
while (ang <= -pi) {
ang += two_pi;
}
return ang;
}
static_assert(pow(1, 0) == 1);
static_assert(pow(1, 1) == 1);
static_assert(pow(1, 2) == 1);
static_assert(pow(2, 0) == 1);
static_assert(pow(2, 1) == 2);
static_assert(pow(2, 2) == 4);
static_assert(pow(2, 3) == 8);
static_assert(pow(3, 0) == 1);
static_assert(pow(3, 1) == 3);
static_assert(pow(3, 2) == 9);
static_assert(pow(pi, 3) == 31.006278991699219F);
float
operator"" _mph(const long double v)
{
return static_cast<float>(mph_to_ms(v));
}
float
operator"" _kph(const long double v)
{
return static_cast<float>(kph_to_ms(v));
}
|