1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
#include "terrain.h"
#include "gfx/models/texture.h"
#include <cache.h>
#include <cstddef>
#include <gfx/gl/shader.h>
#include <gfx/image.h>
#include <gfx/models/mesh.h>
#include <gfx/models/vertex.hpp>
#include <glm/glm.hpp>
#include <location.hpp>
#include <maths.h>
#include <random>
#include <stb/stb_image.h>
Terrain::Terrain() : grass {Texture::cachedTexture.get("grass.png")}, water {Texture::cachedTexture.get("water.png")}
{
constexpr auto size {241}; // Vertices
constexpr auto offset {(size - 1) / 2};
constexpr auto verticesCount = size * size;
constexpr auto resolution = 10; // Grid size
std::vector<Vertex> vertices;
vertices.reserve(verticesCount + 4);
vertices.resize(verticesCount, {{}, {}, {}});
// Initial coordinates
for (auto y = 0U; y < size; y += 1) {
for (auto x = 0U; x < size; x += 1) {
auto & vertex = vertices[x + (y * size)];
vertex.pos
= {resolution * (static_cast<int>(x) - offset), resolution * (static_cast<int>(y) - offset), -1.5};
vertex.normal = up;
vertex.texCoord = {x, y};
}
}
// Add hills
std::mt19937 gen(std::random_device {}());
std::uniform_int_distribution<> rpos(2, size - 2);
std::uniform_int_distribution<> rsize(10, 30);
std::uniform_real_distribution<float> rheight(1, 3);
for (int h = 0; h < 500;) {
const glm::ivec2 hpos {rpos(gen), rpos(gen)};
const glm::ivec2 hsize {rsize(gen), rsize(gen)};
if (const auto lim1 = hpos - hsize; lim1.x > 0 && lim1.y > 0) {
if (const auto lim2 = hpos + hsize; lim2.x < size && lim2.y < size) {
const auto height = rheight(gen);
const glm::ivec2 hsizesqrd {hsize.x * hsize.x, hsize.y * hsize.y};
for (auto y = lim1.y; y < lim2.y; y += 1) {
for (auto x = lim1.x; x < lim2.x; x += 1) {
const auto dist {hpos - glm::ivec2 {x, y}};
const glm::ivec2 distsqrd {dist.x * dist.x, dist.y * dist.y};
const auto out {rdiv(sq(x - hpos.x), sq(hsize.x)) + rdiv(sq(y - hpos.y), sq(hsize.y))};
if (out <= 1.0F) {
auto & vertex
= vertices[static_cast<std::size_t>(x) + (static_cast<std::size_t>(y) * size)];
const auto m {1.F / (7.F * out - 8.F) + 1.F};
vertex.pos.z += height * m;
}
}
}
h += 1;
}
}
}
finish(size, size, vertices);
}
Terrain::Terrain(const std::string & fileName) :
grass {Texture::cachedTexture.get("grass.png")}, water {Texture::cachedTexture.get("water.png")}
{
constexpr auto resolution {100};
const Image map {fileName.c_str(), STBI_grey};
std::vector<Vertex> vertices;
vertices.reserve((map.width * map.height) + 4);
for (auto y = 0U; y < map.height; y += 1) {
for (auto x = 0U; x < map.width; x += 1) {
vertices.emplace_back(glm::vec3 {resolution * (x - (map.width / 2)), resolution * (y - (map.height / 2)),
(static_cast<float>(map.data[x + (y * map.width)]) * 0.1F) - 1.5F},
glm::vec2 {(x % 2) / 2.01, (y % 2) / 2.01}, up);
}
}
finish(map.width, map.height, vertices);
}
void
Terrain::finish(unsigned int width, unsigned int height, std::vector<Vertex> & vertices)
{
const auto tilesCount = (width - 1) * (height - 1);
const auto trianglesCount = tilesCount * 2;
const auto indicesCount = trianglesCount * 3;
std::vector<unsigned int> indices;
indices.reserve(indicesCount + 6);
// Indices
for (auto y = 0U; y < height - 1; y += 1) {
for (auto x = 0U; x < width - 1; x += 1) {
indices.push_back(x + (y * width));
indices.push_back((x + 1) + (y * width));
indices.push_back((x + 1) + ((y + 1) * width));
indices.push_back(x + (y * width));
indices.push_back((x + 1) + ((y + 1) * width));
indices.push_back(x + ((y + 1) * width));
}
}
// Normals
auto v = [&vertices](unsigned int width, unsigned int x, unsigned int y) -> Vertex & {
return vertices[x + (y * width)];
};
for (auto y = 1U; y < height - 1; y += 1) {
for (auto x = 1U; x < width - 1; x += 1) {
const auto a = v(width, x - 1, y).pos;
const auto b = v(width, x, y - 1).pos;
const auto c = v(width, x + 1, y).pos;
const auto d = v(width, x, y + 1).pos;
v(width, x, y).normal = -glm::normalize(glm::cross(b - d, a - c));
}
}
meshes.create<Mesh>(vertices, indices);
}
void
Terrain::tick(TickDuration dur)
{
waveCycle += dur.count();
}
void
Terrain::render(const Shader & shader) const
{
shader.setModel(Location {}, Shader::Program::LandMass);
grass->Bind();
meshes.apply(&Mesh::Draw);
shader.setModel(Location {}, Shader::Program::Water);
shader.setUniform("waves", {waveCycle, 0, 0});
water->Bind();
meshes.apply(&Mesh::Draw);
}
|