1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
#include "link.h"
#include <glm/gtx/transform.hpp>
#include <location.h>
#include <maths.h>
#include <ray.h>
#include <tuple>
Link::Link(End a, End b, float l) : ends {{std::move(a), std::move(b)}}, length {l} { }
LinkCurve::LinkCurve(GlobalPosition3D c, RelativeDistance r, Arc a) : centreBase {c}, radius {r}, arc {std::move(a)} { }
bool
operator<(const GlobalPosition3D & a, const GlobalPosition3D & b)
{
// NOLINTNEXTLINE(hicpp-use-nullptr,modernize-use-nullptr)
return std::tie(a.x, a.y, a.z) < std::tie(b.x, b.y, b.z);
}
bool
operator<(const Node & a, const Node & b)
{
return a.pos < b.pos;
}
Location
LinkStraight::positionAt(RelativeDistance dist, unsigned char start) const
{
const auto es {std::make_pair(ends[start].node.get(), ends[1 - start].node.get())};
const RelativePosition3D diff {es.second->pos - es.first->pos};
const auto dir {glm::normalize(diff)};
return Location {es.first->pos + (vehiclePositionOffset() + dir * dist), {vector_pitch(dir), vector_yaw(dir), 0}};
}
bool
LinkStraight::intersectRay(const Ray<GlobalPosition3D> & ray) const
{
return ray.passesCloseToEdges(
std::array {GlobalPosition3D {ends.front().node->pos}, GlobalPosition3D {ends.back().node->pos}}, 1000);
}
Location
LinkCurve::positionAt(float dist, unsigned char start) const
{
static constexpr std::array<float, 2> dirOffset {half_pi, -half_pi};
const auto frac {dist / length};
const auto es {std::make_pair(ends[start].node.get(), ends[1 - start].node.get())};
const auto as {std::make_pair(arc[start], arc[1 - start])};
const auto ang {as.first + ((as.second - as.first) * frac)};
const auto relPos {(sincosf(ang) || 0.F) * radius};
const auto relClimb {vehiclePositionOffset()
+ RelativePosition3D {0, 0,
static_cast<RelativeDistance>(es.first->pos.z - centreBase.z)
+ (static_cast<RelativeDistance>(es.second->pos.z - es.first->pos.z) * frac)}};
const auto pitch {vector_pitch({0, 0, static_cast<RelativeDistance>(es.second->pos.z - es.first->pos.z) / length})};
return Location {GlobalPosition3D(relPos + relClimb) + centreBase, {pitch, normalize(ang + dirOffset[start]), 0}};
}
bool
LinkCurve::intersectRay(const Ray<GlobalPosition3D> & ray) const
{
const auto & e0p {ends[0].node->pos};
const auto & e1p {ends[1].node->pos};
const auto slength = round_frac(length / 2.F, 5.F);
const auto segs = std::round(15.F * slength / std::pow(radius, 0.7F));
const auto step {glm::vec<2, RelativeDistance> {arc.length(), e1p.z - e0p.z} / segs};
auto segCount = static_cast<std::size_t>(std::lround(segs)) + 1;
std::vector<GlobalPosition3D> points;
points.reserve(segCount);
for (std::remove_const_t<decltype(step)> swing = {arc.first, centreBase.z - e0p.z}; segCount;
swing += step, --segCount) {
points.emplace_back(centreBase + ((sincosf(swing.x) * radius) || swing.y));
}
return ray.passesCloseToEdges(points, 1.F);
}
|