1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
#pragma once
#include "collections.h" // IWYU pragma: keep IterableCollection
#include "ray.h"
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include <filesystem>
#include <glm/vec2.hpp>
#include <optional>
#include <thirdparty/openmesh/glmcompat.h>
struct GeoDataTraits : public OpenMesh::DefaultTraits {
FaceAttributes(OpenMesh::Attributes::Normal | OpenMesh::Attributes::Status);
EdgeAttributes(OpenMesh::Attributes::Status);
VertexAttributes(OpenMesh::Attributes::Normal | OpenMesh::Attributes::Status);
HalfedgeAttributes(OpenMesh::Attributes::Normal | OpenMesh::Attributes::Status);
using Point = glm::vec3;
using Normal = glm::vec3;
};
class GeoData : public OpenMesh::TriMesh_ArrayKernelT<GeoDataTraits> {
private:
GeoData() = default;
public:
static GeoData loadFromAsciiGrid(const std::filesystem::path &);
static GeoData createFlat(glm::vec2 lower, glm::vec2, float h);
struct PointFace {
// NOLINTNEXTLINE(hicpp-explicit-conversions)
PointFace(const glm::vec2 p) : point {p} { }
PointFace(const glm::vec2 p, FaceHandle face) : point {p}, _face {face} { }
PointFace(const glm::vec2 p, const GeoData *);
PointFace(const glm::vec2 p, const GeoData *, FaceHandle start);
const glm::vec2 point;
[[nodiscard]] FaceHandle face(const GeoData *) const;
[[nodiscard]] FaceHandle face(const GeoData *, FaceHandle start) const;
[[nodiscard]] bool
isLocated() const
{
return _face.is_valid();
}
private:
mutable FaceHandle _face {};
};
template<glm::length_t Dim> struct Triangle : public glm::vec<3, glm::vec<Dim, glm::vec2::value_type>> {
using base = glm::vec<3, glm::vec<Dim, glm::vec2::value_type>>;
using base::base;
template<IterableCollection Range> Triangle(const GeoData * m, Range range)
{
assert(std::distance(range.begin(), range.end()) == 3);
std::transform(range.begin(), range.end(), &base::operator[](0), [m](auto vh) {
return m->point(vh);
});
}
glm::vec<Dim, glm::vec2::value_type>
operator*(glm::vec2 bari) const
{
const auto & t {*this};
return t[0] + ((t[1] - t[0]) * bari.x) + ((t[2] - t[1]) * bari.y);
}
};
[[nodiscard]] FaceHandle findPoint(glm::vec2) const;
[[nodiscard]] FaceHandle findPoint(glm::vec2, FaceHandle start) const;
[[nodiscard]] glm::vec3 positionAt(const PointFace &) const;
[[nodiscard]] std::optional<glm::vec3> intersectRay(const Ray &) const;
[[nodiscard]] std::optional<glm::vec3> intersectRay(const Ray &, FaceHandle start) const;
void walk(const PointFace & from, const glm::vec2 to, const std::function<void(FaceHandle)> & op) const;
void walkUntil(const PointFace & from, const glm::vec2 to, const std::function<bool(FaceHandle)> & op) const;
[[nodiscard]] auto
getExtents() const
{
return std::tie(lowerExtent, upperExtent);
}
protected:
template<glm::length_t Dim>
[[nodiscard]] Triangle<Dim>
triangle(FaceHandle f) const
{
return {this, fv_range(f)};
}
[[nodiscard]] static bool triangleContainsPoint(const glm::vec2, const Triangle<2> &);
[[nodiscard]] bool triangleContainsPoint(const glm::vec2, FaceHandle) const;
private:
glm::vec3 lowerExtent {}, upperExtent {};
};
|