summaryrefslogtreecommitdiff
path: root/game/geoData.cpp
blob: 34a1030001caf367d4ea02e380712c1aba4ba8f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "geoData.h"
#include "gfx/image.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <glm/gtx/intersect.hpp>
#include <initializer_list>
#include <limits>
#include <maths.h>
#include <random>
#include <ray.h>
#include <stb/stb_image.h>
#include <stdexcept>
#include <util.h>

GeoData::GeoData(Limits l, float s) :
	limit {std::move(l)}, size {(limit.second - limit.first) + 1}, scale {s}, nodes {[this]() {
		return (static_cast<std::size_t>(size.x * size.y));
	}()}
{
}

void
GeoData::generateRandom()
{
	// We acknowledge this is terrible :)

	// Add hills
	std::mt19937 gen(std::random_device {}());
	std::uniform_int_distribution<> rxpos(limit.first.x + 2, limit.second.x - 2),
			rypos(limit.first.y + 2, limit.second.y - 2);
	std::uniform_int_distribution<> rsize(10, 30);
	std::uniform_real_distribution<float> rheight(1, 3);
	for (int h = 0; h < 500;) {
		const glm::ivec2 hpos {rxpos(gen), rypos(gen)};
		const glm::ivec2 hsize {rsize(gen), rsize(gen)};
		if (const auto lim1 = hpos - hsize; lim1.x > limit.first.x && lim1.y > limit.first.y) {
			if (const auto lim2 = hpos + hsize; lim2.x < limit.second.x && lim2.y < limit.second.y) {
				const auto height = rheight(gen);
				const glm::ivec2 hsizesqrd {hsize.x * hsize.x, hsize.y * hsize.y};
				for (auto y = lim1.y; y < lim2.y; y += 1) {
					for (auto x = lim1.x; x < lim2.x; x += 1) {
						const auto dist {hpos - glm::ivec2 {x, y}};
						const glm::ivec2 distsqrd {dist.x * dist.x, dist.y * dist.y};
						const auto out {ratio(sq(x - hpos.x), sq(hsize.x)) + ratio(sq(y - hpos.y), sq(hsize.y))};
						if (out <= 1.0F) {
							auto & node {nodes[at({x, y})]};
							const auto m {1.F / (7.F * out - 8.F) + 1.F};
							node.height += height * m;
						}
					}
				}
				h += 1;
			}
		}
	}
}

void
GeoData::loadFromImages(const std::filesystem::path & fileName, float scale_)
{
	const Image map {fileName.c_str(), STBI_grey};
	size = {map.width, map.height};
	limit = {{0, 0}, size - glm::uvec2 {1, 1}};
	const auto points {size.x * size.y};
	scale = scale_;
	nodes.resize(points);

	std::transform(map.data.data(), map.data.data() + points, nodes.begin(), [](auto d) {
		return Node {(d * 0.1F) - 1.5F};
	});
}

GeoData::Quad
GeoData::quad(glm::vec2 wcoord) const
{
	constexpr static const std::array<glm::vec2, 4> corners {{{0, 0}, {0, 1}, {1, 0}, {1, 1}}};
	return transform_array(transform_array(corners,
								   [coord = (wcoord / scale)](const auto c) {
									   return glm::vec2 {std::floor(coord.x), std::floor(coord.y)} + c;
								   }),
			[this](const auto c) {
				return (c * scale) || nodes[at(c)].height;
			});
}

glm::vec3
GeoData::positionAt(const glm::vec2 wcoord) const
{
	const auto point {quad(wcoord)};
	const glm::vec2 frac = (wcoord - !point.front()) / scale;
	auto edge = [&point, &frac](auto offset) {
		return point[offset].z + ((point[offset + 2].z - point[offset].z) * frac.x);
	};
	const auto heightFloor = edge(0U), heightCeil = edge(1U),
			   heightMid = heightFloor + ((heightCeil - heightFloor) * frac.y);

	return wcoord || heightMid;
}

GeoData::RayTracer::RayTracer(glm::vec2 p0, glm::vec2 p1) : RayTracer {p0, p1, glm::abs(p1)} { }
GeoData::RayTracer::RayTracer(glm::vec2 p0, glm::vec2 p1, glm::vec2 d) :
	RayTracer {p0, d, byAxis(p0, p1, d, 0), byAxis(p0, p1, d, 1)}
{
}

GeoData::RayTracer::RayTracer(
		glm::vec2 p0, glm::vec2 d_, std::pair<float, float> xdata, std::pair<float, float> ydata) :
	p {glm::floor(p0)},
	d {d_}, error {xdata.second - ydata.second}, inc {xdata.first, ydata.first}
{
}

std::pair<float, float>
GeoData::RayTracer::byAxis(glm::vec2 p0, glm::vec2 p1, glm::vec2 d, glm::length_t axis)
{
	using Limits = std::numeric_limits<typename glm::vec2::value_type>;
	static_assert(Limits::has_infinity);
	if (d[axis] == 0) {
		return {0, Limits::infinity()};
	}
	else if (p1[axis] > 0) {
		return {1, (std::floor(p0[axis]) + 1.F - p0[axis]) * d[1 - axis]};
	}
	else {
		return {-1, (p0[axis] - std::floor(p0[axis])) * d[1 - axis]};
	}
}

glm::vec2
GeoData::RayTracer::next()
{
	const glm::vec2 cur {p};

	static constexpr const glm::vec2 m {1, -1};
	const int axis = (error > 0) ? 1 : 0;
	p[axis] += inc[axis];
	error += d[1 - axis] * m[axis];

	return cur;
}

std::optional<glm::vec3>
GeoData::intersectRay(const Ray & ray) const
{
	if (glm::length(!ray.direction) <= 0) {
		return {};
	}
	RayTracer rt {ray.start / scale, ray.direction};
	while (true) {
		const auto n {rt.next() * scale};
		try {
			const auto point = quad(n);
			for (auto offset : {0U, 1U}) {
				glm::vec2 bary;
				float distance;
				if (glm::intersectRayTriangle(ray.start, ray.direction, point[offset], point[offset + 1],
							point[offset + 2], bary, distance)) {
					return point[offset] + ((point[offset + 1] - point[offset]) * bary[0])
							+ ((point[offset + 2] - point[offset]) * bary[1]);
				}
			}
		}
		catch (std::range_error &) {
			const auto rel = n / !ray.direction;
			if (rel.x > 0 && rel.y > 0) {
				return {};
			}
		}
	}

	return {};
}

unsigned int
GeoData::at(glm::ivec2 coord) const
{
	if (coord.x < limit.first.x || coord.x > limit.second.x || coord.y < limit.first.y || coord.y > limit.second.y) {
		throw std::range_error {"Coordinates outside GeoData limits"};
	}
	const glm::uvec2 offset = coord - limit.first;
	return offset.x + (offset.y * size.x);
}

unsigned int
GeoData::at(int x, int y) const
{
	return at({x, y});
}

GeoData::Limits
GeoData::getLimit() const
{
	return limit;
}

float
GeoData::getScale() const
{
	return scale;
}

glm::uvec2
GeoData::getSize() const
{
	return size;
}

std::span<const GeoData::Node>
GeoData::getNodes() const
{
	return nodes;
}