summaryrefslogtreecommitdiff
path: root/lib/maths.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/maths.cpp')
-rw-r--r--lib/maths.cpp128
1 files changed, 128 insertions, 0 deletions
diff --git a/lib/maths.cpp b/lib/maths.cpp
new file mode 100644
index 0000000..543c887
--- /dev/null
+++ b/lib/maths.cpp
@@ -0,0 +1,128 @@
+#include "maths.h"
+#include <cmath>
+#include <glm/glm.hpp>
+#include <glm/gtx/rotate_vector.hpp>
+#include <glm/gtx/transform.hpp>
+#include <stdexcept>
+
+glm::mat4
+flat_orientation(const glm::vec3 & diff)
+{
+ static const auto oneeighty {glm::rotate(pi, up)};
+ const auto flatdiff {glm::normalize(glm::vec3 {diff.x, 0, diff.z})};
+ auto e {glm::orientation(flatdiff, north)};
+ // Handle if diff is exactly opposite to north
+ return (std::isnan(e[0][0])) ? oneeighty : e;
+}
+
+float
+vector_yaw(const glm::vec3 & diff)
+{
+ return std::atan2(diff.x, diff.z);
+}
+
+float
+vector_pitch(const glm::vec3 & diff)
+{
+ return std::atan(diff.y);
+}
+
+float
+round_frac(const float & v, const float & frac)
+{
+ return std::round(v / frac) * frac;
+}
+
+float
+normalize(float ang)
+{
+ while (ang > pi) {
+ ang -= two_pi;
+ }
+ while (ang <= -pi) {
+ ang += two_pi;
+ }
+ return ang;
+}
+
+Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) :
+ Arc([&]() -> Arc {
+ const auto diffa = e0p - centre3;
+ const auto diffb = e1p - centre3;
+ const auto anga = vector_yaw(diffa);
+ const auto angb = [&diffb, &anga]() {
+ const auto angb = vector_yaw(diffb);
+ return (angb < anga) ? angb + two_pi : angb;
+ }();
+ return {anga, angb};
+ }())
+{
+}
+
+std::pair<glm::vec2, bool>
+find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye)
+{
+ if (as == bs) {
+ return {as, false};
+ }
+ const auto perps = entrys + half_pi;
+ const auto perpe = entrye - half_pi;
+ const glm::vec2 ad {std::sin(perps), std::cos(perps)};
+ const glm::vec2 bd {std::sin(perpe), std::cos(perpe)};
+ return find_arc_centre(as, ad, bs, bd);
+}
+
+std::pair<glm::vec2, bool>
+find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd)
+{
+ const auto det = bd.x * ad.y - bd.y * ad.x;
+ if (det != 0) { // near parallel line will yield noisy results
+ const auto d = bs - as;
+ const auto u = (d.y * bd.x - d.x * bd.y) / det;
+ return {as + ad * u, u < 0};
+ }
+ throw std::runtime_error("no intersection");
+}
+
+std::pair<float, float>
+find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye)
+{
+ const auto getrad = [&](float leftOrRight) {
+ const auto perps = entrys + leftOrRight;
+ const auto perpe = entrye + leftOrRight;
+ const glm::vec2 ad {std::sin(perps), std::cos(perps)};
+ const glm::vec2 bd {std::sin(perpe), std::cos(perpe)};
+ return find_arcs_radius(start, ad, end, bd);
+ };
+ return {getrad(-half_pi), getrad(half_pi)};
+}
+
+float
+find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd)
+{
+ // Short name functions for big forula
+ auto sq = [](auto v) {
+ return v * v;
+ };
+ auto sqrt = [](float v) {
+ return std::sqrt(v);
+ };
+
+ // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r
+ // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2
+ // According to symbolabs.com equation tool, that solves for r to give:
+ // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4
+ // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y
+ // W+W^(2)-4))
+
+ // These exist cos limitations of online formula rearrangement, and I'm OK with that.
+ const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y};
+ const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y};
+
+ return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W
+ - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W
+ - 2 * p * W)
+ - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)
+ * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p)))))
+ / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4));
+}