diff options
Diffstat (limited to 'lib/maths.cpp')
-rw-r--r-- | lib/maths.cpp | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/lib/maths.cpp b/lib/maths.cpp new file mode 100644 index 0000000..543c887 --- /dev/null +++ b/lib/maths.cpp @@ -0,0 +1,128 @@ +#include "maths.h" +#include <cmath> +#include <glm/glm.hpp> +#include <glm/gtx/rotate_vector.hpp> +#include <glm/gtx/transform.hpp> +#include <stdexcept> + +glm::mat4 +flat_orientation(const glm::vec3 & diff) +{ + static const auto oneeighty {glm::rotate(pi, up)}; + const auto flatdiff {glm::normalize(glm::vec3 {diff.x, 0, diff.z})}; + auto e {glm::orientation(flatdiff, north)}; + // Handle if diff is exactly opposite to north + return (std::isnan(e[0][0])) ? oneeighty : e; +} + +float +vector_yaw(const glm::vec3 & diff) +{ + return std::atan2(diff.x, diff.z); +} + +float +vector_pitch(const glm::vec3 & diff) +{ + return std::atan(diff.y); +} + +float +round_frac(const float & v, const float & frac) +{ + return std::round(v / frac) * frac; +} + +float +normalize(float ang) +{ + while (ang > pi) { + ang -= two_pi; + } + while (ang <= -pi) { + ang += two_pi; + } + return ang; +} + +Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : + Arc([&]() -> Arc { + const auto diffa = e0p - centre3; + const auto diffb = e1p - centre3; + const auto anga = vector_yaw(diffa); + const auto angb = [&diffb, &anga]() { + const auto angb = vector_yaw(diffb); + return (angb < anga) ? angb + two_pi : angb; + }(); + return {anga, angb}; + }()) +{ +} + +std::pair<glm::vec2, bool> +find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) +{ + if (as == bs) { + return {as, false}; + } + const auto perps = entrys + half_pi; + const auto perpe = entrye - half_pi; + const glm::vec2 ad {std::sin(perps), std::cos(perps)}; + const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; + return find_arc_centre(as, ad, bs, bd); +} + +std::pair<glm::vec2, bool> +find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd) +{ + const auto det = bd.x * ad.y - bd.y * ad.x; + if (det != 0) { // near parallel line will yield noisy results + const auto d = bs - as; + const auto u = (d.y * bd.x - d.x * bd.y) / det; + return {as + ad * u, u < 0}; + } + throw std::runtime_error("no intersection"); +} + +std::pair<float, float> +find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye) +{ + const auto getrad = [&](float leftOrRight) { + const auto perps = entrys + leftOrRight; + const auto perpe = entrye + leftOrRight; + const glm::vec2 ad {std::sin(perps), std::cos(perps)}; + const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; + return find_arcs_radius(start, ad, end, bd); + }; + return {getrad(-half_pi), getrad(half_pi)}; +} + +float +find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd) +{ + // Short name functions for big forula + auto sq = [](auto v) { + return v * v; + }; + auto sqrt = [](float v) { + return std::sqrt(v); + }; + + // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r + // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 + // According to symbolabs.com equation tool, that solves for r to give: + // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 + // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y + // W+W^(2)-4)) + + // These exist cos limitations of online formula rearrangement, and I'm OK with that. + const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; + const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; + + return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W + - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W + - 2 * p * W) + - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) + * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) + / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); +} |