summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorDan Goodliffe <dan@randomdan.homeip.net>2024-10-22 01:01:02 +0100
committerDan Goodliffe <dan@randomdan.homeip.net>2024-10-22 01:01:02 +0100
commit9edf8711471db08427c5441ed37b6dfe3dd7f3b4 (patch)
tree4356058e9fd85e44c4404c5db8d5d3322a64aa29 /lib
parentBump to CTRE to v3.9.0-1-gacb2f4d to fix compilation with clang 19 (diff)
parentFurther template maths functions (diff)
downloadilt-9edf8711471db08427c5441ed37b6dfe3dd7f3b4.tar.bz2
ilt-9edf8711471db08427c5441ed37b6dfe3dd7f3b4.tar.xz
ilt-9edf8711471db08427c5441ed37b6dfe3dd7f3b4.zip
Merge branch 'billboard-shadows'
Diffstat (limited to 'lib')
-rw-r--r--lib/maths.cpp101
-rw-r--r--lib/maths.h310
2 files changed, 238 insertions, 173 deletions
diff --git a/lib/maths.cpp b/lib/maths.cpp
index 51e27fe..3a9bf9b 100644
--- a/lib/maths.cpp
+++ b/lib/maths.cpp
@@ -19,96 +19,17 @@ flat_orientation(const Direction3D & diff)
return (std::isnan(e[0][0])) ? oneeighty : e;
}
-// Helper to lookup into a matrix given an xy vector coordinate
-template<typename M, typename I>
-inline auto &
-operator^(M & m, glm::vec<2, I> xy)
-{
- return m[xy.x][xy.y];
-}
-
-// Create a matrix for the angle, given the targets into the matrix
-template<typename M, typename I>
-inline auto
-rotation(typename M::value_type a, glm::vec<2, I> c1, glm::vec<2, I> s1, glm::vec<2, I> c2, glm::vec<2, I> ms2)
-{
- M m(1);
- sincosf(a, m ^ s1, m ^ c1);
- m ^ c2 = m ^ c1;
- m ^ ms2 = -(m ^ s1);
- return m;
-}
-
-// Create a flat (2D) transformation matrix
-glm::mat2
-rotate_flat(float a)
-{
- return rotation<glm::mat2, glm::length_t>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
-}
-
-// Create a yaw transformation matrix
-glm::mat4
-rotate_yaw(float a)
-{
- return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
-}
-
-// Create a roll transformation matrix
-glm::mat4
-rotate_roll(float a)
-{
- return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
-}
-
-// Create a pitch transformation matrix
-glm::mat4
-rotate_pitch(float a)
-{
- return rotation<glm::mat4, glm::length_t>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
-}
-
-// Create a combined yaw, pitch, roll transformation matrix
-glm::mat4
-rotate_ypr(Rotation3D a)
-{
- return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z);
-}
-
-glm::mat4
-rotate_yp(Rotation2D a)
-{
- return rotate_yaw(a.y) * rotate_pitch(a.x);
-}
-
-float
-vector_yaw(const Direction2D & diff)
-{
- return std::atan2(diff.x, diff.y);
-}
-
-float
-vector_pitch(const Direction3D & diff)
-{
- return std::atan(diff.z);
-}
-
-float
-round_frac(const float & v, const float & frac)
-{
- return std::round(v / frac) * frac;
-}
-
-float
-normalize(float ang)
-{
- while (ang > pi) {
- ang -= two_pi;
- }
- while (ang <= -pi) {
- ang += two_pi;
- }
- return ang;
-}
+static_assert(pow(1, 0) == 1);
+static_assert(pow(1, 1) == 1);
+static_assert(pow(1, 2) == 1);
+static_assert(pow(2, 0) == 1);
+static_assert(pow(2, 1) == 2);
+static_assert(pow(2, 2) == 4);
+static_assert(pow(2, 3) == 8);
+static_assert(pow(3, 0) == 1);
+static_assert(pow(3, 1) == 3);
+static_assert(pow(3, 2) == 9);
+static_assert(pow(pi, 3) == 31.006278991699219F);
float
operator"" _mph(const long double v)
diff --git a/lib/maths.h b/lib/maths.h
index 3127d3c..90ddb69 100644
--- a/lib/maths.h
+++ b/lib/maths.h
@@ -17,22 +17,22 @@ struct Arc : public std::pair<Angle, Angle> {
}
Arc(const RelativePosition2D & dir0, const RelativePosition2D & dir1);
- Arc(const Angle angb, const Angle anga);
+ Arc(Angle anga, Angle angb);
auto
- operator[](bool i) const
+ operator[](bool getSecond) const
{
- return i ? second : first;
+ return getSecond ? second : first;
}
- [[nodiscard]] constexpr inline float
+ [[nodiscard]] constexpr float
length() const
{
return second - first;
}
};
-constexpr const RelativePosition3D up {0, 0, 1};
+constexpr const RelativePosition3D up {0, 0, 1}; // NOLINT(readability-identifier-length)
constexpr const RelativePosition3D down {0, 0, -1};
constexpr const RelativePosition3D north {0, 1, 0};
constexpr const RelativePosition3D south {0, -1, 0};
@@ -40,7 +40,7 @@ constexpr const RelativePosition3D east {1, 0, 0};
constexpr const RelativePosition3D west {-1, 0, 0};
constexpr auto half_pi {glm::half_pi<float>()};
constexpr auto quarter_pi {half_pi / 2};
-constexpr auto pi {glm::pi<float>()};
+constexpr auto pi {glm::pi<float>()}; // NOLINT(readability-identifier-length)
constexpr auto two_pi {glm::two_pi<float>()};
constexpr auto degreesToRads = pi / 180.F;
@@ -48,152 +48,283 @@ constexpr auto earthMeanRadius = 6371.01F; // In km
constexpr auto astronomicalUnit = 149597890.F; // In km
template<glm::length_t D>
-constexpr inline GlobalPosition<D>
-operator+(const GlobalPosition<D> & g, const RelativePosition<D> & r)
+constexpr GlobalPosition<D>
+operator+(const GlobalPosition<D> & global, const RelativePosition<D> & relative)
{
- return g + GlobalPosition<D>(glm::round(r));
+ return global + GlobalPosition<D>(glm::round(relative));
}
template<glm::length_t D>
-constexpr inline GlobalPosition<D>
-operator+(const GlobalPosition<D> & g, const CalcPosition<D> & r)
+constexpr GlobalPosition<D>
+operator+(const GlobalPosition<D> & global, const CalcPosition<D> & relative)
{
- return g + GlobalPosition<D>(r);
+ return global + GlobalPosition<D>(relative);
}
template<glm::length_t D>
-constexpr inline GlobalPosition<D>
-operator-(const GlobalPosition<D> & g, const RelativePosition<D> & r)
+constexpr GlobalPosition<D>
+operator-(const GlobalPosition<D> & global, const RelativePosition<D> & relative)
{
- return g - GlobalPosition<D>(glm::round(r));
+ return global - GlobalPosition<D>(glm::round(relative));
}
template<glm::length_t D>
-constexpr inline GlobalPosition<D>
-operator-(const GlobalPosition<D> & g, const CalcPosition<D> & r)
+constexpr GlobalPosition<D>
+operator-(const GlobalPosition<D> & global, const CalcPosition<D> & relative)
{
- return g - GlobalPosition<D>(r);
+ return global - GlobalPosition<D>(relative);
+}
+
+template<glm::length_t D, std::integral T, glm::qualifier Q>
+constexpr RelativePosition<D>
+difference(const glm::vec<D, T, Q> & globalA, const glm::vec<D, T, Q> & globalB)
+{
+ return globalA - globalB;
}
glm::mat4 flat_orientation(const Rotation3D & diff);
-// C++ wrapper for C's sincosf, but with references, not pointers
-inline auto
-sincosf(float a, float & s, float & c)
+namespace {
+ // Helpers
+ // C++ wrapper for C's sincosf, but with references, not pointers
+ template<std::floating_point T>
+ constexpr void
+ sincos(T angle, T & sinOut, T & cosOut)
+ {
+ if consteval {
+ sinOut = std::sin(angle);
+ cosOut = std::cos(angle);
+ }
+ else {
+ if constexpr (std::is_same_v<T, float>) {
+ ::sincosf(angle, &sinOut, &cosOut);
+ }
+ else if constexpr (std::is_same_v<T, double>) {
+ ::sincos(angle, &sinOut, &cosOut);
+ }
+ else if constexpr (std::is_same_v<T, long double>) {
+ ::sincosl(angle, &sinOut, &cosOut);
+ }
+ }
+ }
+
+ template<std::floating_point T, glm::qualifier Q = glm::qualifier::defaultp>
+ constexpr auto
+ sincos(const T angle)
+ {
+ glm::vec<2, T, Q> sincosOut {};
+ sincos(angle, sincosOut.x, sincosOut.y);
+ return sincosOut;
+ }
+
+ // Helper to lookup into a matrix given an xy vector coordinate
+ template<glm::length_t C, glm::length_t R, typename T, glm::qualifier Q, std::integral I = glm::length_t>
+ constexpr auto &
+ operator^(glm::mat<C, R, T, Q> & matrix, const glm::vec<2, I> rowCol)
+ {
+ return matrix[rowCol.x][rowCol.y];
+ }
+
+ // Create a matrix for the angle, given the targets into the matrix
+ template<glm::length_t D, std::floating_point T, glm::qualifier Q, std::integral I = glm::length_t>
+ constexpr auto
+ rotation(const T angle, const glm::vec<2, I> cos1, const glm::vec<2, I> sin1, const glm::vec<2, I> cos2,
+ const glm::vec<2, I> negSin1)
+ {
+ glm::mat<D, D, T, Q> out(1);
+ sincos(angle, out ^ sin1, out ^ cos1);
+ out ^ cos2 = out ^ cos1;
+ out ^ negSin1 = -(out ^ sin1);
+ return out;
+ }
+}
+
+// Create a flat transformation matrix
+template<glm::length_t D = 2, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 2)
+constexpr auto
+rotate_flat(const T angle)
+{
+ return rotation<D, T, Q>(angle, {0, 0}, {0, 1}, {1, 1}, {1, 0});
+}
+
+// Create a yaw transformation matrix
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 2)
+constexpr auto
+rotate_yaw(const T angle)
+{
+ return rotation<D, T, Q>(angle, {0, 0}, {1, 0}, {1, 1}, {0, 1});
+}
+
+// Create a roll transformation matrix
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 3)
+constexpr auto
+rotate_roll(const T angle)
+{
+ return rotation<D, T, Q>(angle, {0, 0}, {2, 0}, {2, 2}, {0, 2});
+}
+
+// Create a pitch transformation matrix
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 3)
+constexpr auto
+rotate_pitch(const T angle)
+{
+ return rotation<D, T, Q>(angle, {1, 1}, {1, 2}, {2, 2}, {2, 1});
+}
+
+// Create a combined yaw, pitch, roll transformation matrix
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 3)
+constexpr auto
+rotate_ypr(const glm::vec<3, T, Q> & angles)
+{
+ return rotate_yaw<D>(angles.y) * rotate_pitch<D>(angles.x) * rotate_roll<D>(angles.z);
+}
+
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 3)
+constexpr auto
+rotate_yp(const T yaw, const T pitch)
{
- return sincosf(a, &s, &c);
+ return rotate_yaw<D>(yaw) * rotate_pitch<D>(pitch);
}
-inline Rotation2D
-sincosf(float a)
+template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
+ requires(D >= 3)
+constexpr auto
+rotate_yp(const glm::vec<2, T, Q> & angles)
{
- Rotation2D sc;
- sincosf(a, sc.x, sc.y);
- return sc;
+ return rotate_yp<D>(angles.y, angles.x);
}
-glm::mat2 rotate_flat(float);
-glm::mat4 rotate_roll(float);
-glm::mat4 rotate_yaw(float);
-glm::mat4 rotate_pitch(float);
-glm::mat4 rotate_yp(Rotation2D);
-glm::mat4 rotate_ypr(Rotation3D);
+template<glm::length_t D, glm::qualifier Q = glm::qualifier::defaultp, typename T>
+ requires(D >= 2)
+constexpr auto
+vector_yaw(const glm::vec<D, T, Q> & diff)
+{
+ return std::atan2(diff.x, diff.y);
+}
-float vector_yaw(const Direction2D & diff);
-float vector_pitch(const Direction3D & diff);
+template<glm::length_t D, glm::qualifier Q = glm::qualifier::defaultp, typename T>
+ requires(D >= 3)
+constexpr auto
+vector_pitch(const glm::vec<D, T, Q> & diff)
+{
+ return std::atan(diff.z);
+}
template<typename T, glm::qualifier Q>
-glm::vec<2, T, Q>
-vector_normal(const glm::vec<2, T, Q> & v)
+constexpr glm::vec<2, T, Q>
+vector_normal(const glm::vec<2, T, Q> & vector)
{
- return {-v.y, v.x};
+ return {-vector.y, vector.x};
};
-float round_frac(const float & v, const float & frac);
+template<std::floating_point T>
+constexpr auto
+round_frac(const T value, const T frac)
+{
+ return std::round(value / frac) * frac;
+}
template<typename T>
-inline constexpr auto
-sq(T v)
+ requires requires(T value) { value * value; }
+constexpr auto
+sq(T value)
{
- return v * v;
+ return value * value;
}
template<glm::qualifier Q>
-inline constexpr glm::vec<3, int64_t, Q>
-crossProduct(const glm::vec<3, int64_t, Q> a, const glm::vec<3, int64_t, Q> b)
+constexpr glm::vec<3, int64_t, Q>
+crossProduct(const glm::vec<3, int64_t, Q> & valueA, const glm::vec<3, int64_t, Q> & valueB)
{
return {
- (a.y * b.z) - (a.z * b.y),
- (a.z * b.x) - (a.x * b.z),
- (a.x * b.y) - (a.y * b.x),
+ (valueA.y * valueB.z) - (valueA.z * valueB.y),
+ (valueA.z * valueB.x) - (valueA.x * valueB.z),
+ (valueA.x * valueB.y) - (valueA.y * valueB.x),
};
}
template<std::integral T, glm::qualifier Q>
-inline constexpr glm::vec<3, T, Q>
-crossProduct(const glm::vec<3, T, Q> a, const glm::vec<3, T, Q> b)
+constexpr glm::vec<3, T, Q>
+crossProduct(const glm::vec<3, T, Q> & valueA, const glm::vec<3, T, Q> & valueB)
{
- return crossProduct<Q>(a, b);
+ return crossProduct<Q>(valueA, valueB);
}
template<std::floating_point T, glm::qualifier Q>
-inline constexpr glm::vec<3, T, Q>
-crossProduct(const glm::vec<3, T, Q> a, const glm::vec<3, T, Q> b)
+constexpr glm::vec<3, T, Q>
+crossProduct(const glm::vec<3, T, Q> & valueA, const glm::vec<3, T, Q> & valueB)
{
- return glm::cross(a, b);
+ return glm::cross(valueA, valueB);
}
template<typename R = float, typename Ta, typename Tb>
-inline constexpr auto
-ratio(Ta a, Tb b)
+constexpr auto
+ratio(const Ta valueA, const Tb valueB)
{
- return (static_cast<R>(a) / static_cast<R>(b));
+ return (static_cast<R>(valueA) / static_cast<R>(valueB));
}
template<typename R = float, typename T, glm::qualifier Q>
-inline constexpr auto
-ratio(glm::vec<2, T, Q> v)
+constexpr auto
+ratio(const glm::vec<2, T, Q> & value)
{
- return ratio<R>(v.x, v.y);
+ return ratio<R>(value.x, value.y);
}
-template<glm::length_t L = 3, typename T, glm::qualifier Q>
-inline constexpr glm::vec<L, T, Q>
-perspective_divide(glm::vec<4, T, Q> v)
+template<glm::length_t L = 3, std::floating_point T, glm::qualifier Q>
+constexpr auto
+perspective_divide(const glm::vec<4, T, Q> & value)
{
- return v / v.w;
+ return value / value.w;
}
template<glm::length_t L1, glm::length_t L2, typename T, glm::qualifier Q>
-inline constexpr glm::vec<L1 + L2, T, Q>
-operator||(const glm::vec<L1, T, Q> v1, const glm::vec<L2, T, Q> v2)
+constexpr glm::vec<L1 + L2, T, Q>
+operator||(const glm::vec<L1, T, Q> valueA, const glm::vec<L2, T, Q> valueB)
{
- return {v1, v2};
+ return {valueA, valueB};
}
template<glm::length_t L, typename T, glm::qualifier Q>
-inline constexpr glm::vec<L + 1, T, Q>
-operator||(const glm::vec<L, T, Q> v1, const T v2)
+constexpr glm::vec<L + 1, T, Q>
+operator||(const glm::vec<L, T, Q> valueA, const T valueB)
{
- return {v1, v2};
+ return {valueA, valueB};
}
-template<glm::length_t L, typename T, glm::qualifier Q>
-inline constexpr glm::vec<L, T, Q>
-perspectiveMultiply(const glm::vec<L, T, Q> & p, const glm::mat<L + 1, L + 1, T, Q> & mutation)
+template<glm::length_t L, std::floating_point T, glm::qualifier Q>
+constexpr glm::vec<L, T, Q>
+perspectiveMultiply(const glm::vec<L, T, Q> & base, const glm::mat<L + 1, L + 1, T, Q> & mutation)
{
- const auto p2 = mutation * (p || T(1));
- return p2 / p2.w;
+ const auto mutated = mutation * (base || T(1));
+ return mutated / mutated.w;
}
-template<glm::length_t L, typename T, glm::qualifier Q>
-inline constexpr glm::vec<L, T, Q>
-perspectiveApply(glm::vec<L, T, Q> & p, const glm::mat<L + 1, L + 1, T, Q> & mutation)
+template<glm::length_t L, std::floating_point T, glm::qualifier Q>
+constexpr glm::vec<L, T, Q>
+perspectiveApply(glm::vec<L, T, Q> & base, const glm::mat<L + 1, L + 1, T, Q> & mutation)
{
- return p = perspectiveMultiply(p, mutation);
+ return base = perspectiveMultiply(base, mutation);
}
-float normalize(float ang);
+template<std::floating_point T>
+constexpr T
+normalize(T ang)
+{
+ while (ang > glm::pi<T>()) {
+ ang -= glm::two_pi<T>();
+ }
+ while (ang <= -glm::pi<T>()) {
+ ang += glm::two_pi<T>();
+ }
+ return ang;
+}
template<typename T, glm::qualifier Q>
std::pair<glm::vec<2, T, Q>, bool>
@@ -215,7 +346,7 @@ find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, An
if (start == end) {
return {start, false};
}
- return find_arc_centre(start, sincosf(entrys + half_pi), end, sincosf(entrye - half_pi));
+ return find_arc_centre(start, sincos(entrys + half_pi), end, sincos(entrye - half_pi));
}
template<typename T, glm::qualifier Q>
@@ -248,7 +379,7 @@ std::pair<Angle, Angle>
find_arcs_radius(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye)
{
const auto getrad = [&](auto leftOrRight) {
- return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight));
+ return find_arcs_radius(start, sincos(entrys + leftOrRight), end, sincos(entrye + leftOrRight));
};
return {getrad(-half_pi), getrad(half_pi)};
}
@@ -260,16 +391,29 @@ midpoint(const std::pair<T, T> & v)
return std::midpoint(v.first, v.second);
}
+// std::pow is not constexpr
+template<typename T>
+ requires requires(T n) { n *= n; }
+constexpr T
+pow(const T base, std::integral auto exp)
+{
+ T res {1};
+ while (exp--) {
+ res *= base;
+ }
+ return res;
+}
+
// Conversions
template<typename T>
-inline constexpr auto
+constexpr auto
mph_to_ms(T v)
{
return v / 2.237L;
}
template<typename T>
-inline constexpr auto
+constexpr auto
kph_to_ms(T v)
{
return v / 3.6L;