summaryrefslogtreecommitdiff
path: root/lib/maths.cpp
diff options
context:
space:
mode:
authorDan Goodliffe <dan@randomdan.homeip.net>2023-11-09 00:40:40 +0000
committerDan Goodliffe <dan@randomdan.homeip.net>2023-11-09 00:40:40 +0000
commit9c2c3f71065c94a18c02440111b6ff8ca977b90e (patch)
tree339c9846cdd6937a5e77b37f88e3ee3674f944e5 /lib/maths.cpp
parentWIP typedefing all the things - headers (diff)
downloadilt-9c2c3f71065c94a18c02440111b6ff8ca977b90e.tar.bz2
ilt-9c2c3f71065c94a18c02440111b6ff8ca977b90e.tar.xz
ilt-9c2c3f71065c94a18c02440111b6ff8ca977b90e.zip
WIP typedefing all the things - sources
Diffstat (limited to 'lib/maths.cpp')
-rw-r--r--lib/maths.cpp40
1 files changed, 20 insertions, 20 deletions
diff --git a/lib/maths.cpp b/lib/maths.cpp
index 7594b59..5430ef6 100644
--- a/lib/maths.cpp
+++ b/lib/maths.cpp
@@ -6,7 +6,7 @@
#include <stdexcept>
glm::mat4
-flat_orientation(const glm::vec3 & diff)
+flat_orientation(const Direction3D & diff)
{
static const auto oneeighty {glm::rotate(pi, up)};
const auto flatdiff {glm::normalize(!!diff)};
@@ -16,17 +16,17 @@ flat_orientation(const glm::vec3 & diff)
}
// Helper to lookup into a matrix given an xy vector coordinate
-template<typename M>
+template<typename M, typename I>
inline auto &
-operator^(M & m, glm::ivec2 xy)
+operator^(M & m, glm::vec<2, I> xy)
{
return m[xy.x][xy.y];
}
// Create a matrix for the angle, given the targets into the matrix
-template<typename M>
+template<typename M, typename I>
inline auto
-rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2, glm::ivec2 ms2)
+rotation(typename M::value_type a, glm::vec<2, I> c1, glm::vec<2, I> s1, glm::vec<2, I> c2, glm::vec<2, I> ms2)
{
M m(1);
sincosf(a, m ^ s1, m ^ c1);
@@ -39,51 +39,51 @@ rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2,
glm::mat2
rotate_flat(float a)
{
- return rotation<glm::mat2>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
+ return rotation<glm::mat2, glm::length_t>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
}
// Create a yaw transformation matrix
glm::mat4
rotate_yaw(float a)
{
- return rotation<glm::mat4>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
+ return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
}
// Create a roll transformation matrix
glm::mat4
rotate_roll(float a)
{
- return rotation<glm::mat4>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
+ return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
}
// Create a pitch transformation matrix
glm::mat4
rotate_pitch(float a)
{
- return rotation<glm::mat4>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
+ return rotation<glm::mat4, glm::length_t>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
}
// Create a combined yaw, pitch, roll transformation matrix
glm::mat4
-rotate_ypr(glm::vec3 a)
+rotate_ypr(Rotation3D a)
{
return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z);
}
glm::mat4
-rotate_yp(glm::vec2 a)
+rotate_yp(Rotation2D a)
{
return rotate_yaw(a.y) * rotate_pitch(a.x);
}
float
-vector_yaw(const glm::vec3 & diff)
+vector_yaw(const Direction3D & diff)
{
return std::atan2(diff.x, diff.y);
}
float
-vector_pitch(const glm::vec3 & diff)
+vector_pitch(const Direction3D & diff)
{
return std::atan(diff.z);
}
@@ -106,7 +106,7 @@ normalize(float ang)
return ang;
}
-Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) :
+Arc::Arc(const Position3D & centre3, const Position3D & e0p, const Position3D & e1p) :
Arc([&]() -> Arc {
const auto diffa = e0p - centre3;
const auto diffb = e1p - centre3;
@@ -120,8 +120,8 @@ Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p
{
}
-std::pair<glm::vec2, bool>
-find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye)
+std::pair<Position2D, bool>
+find_arc_centre(Position2D as, float entrys, Position2D bs, float entrye)
{
if (as == bs) {
return {as, false};
@@ -129,8 +129,8 @@ find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye)
return find_arc_centre(as, sincosf(entrys + half_pi), bs, sincosf(entrye - half_pi));
}
-std::pair<glm::vec2, bool>
-find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd)
+std::pair<Position2D, bool>
+find_arc_centre(Position2D as, Position2D ad, Position2D bs, Position2D bd)
{
const auto det = bd.x * ad.y - bd.y * ad.x;
if (det != 0) { // near parallel line will yield noisy results
@@ -142,7 +142,7 @@ find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd)
}
std::pair<float, float>
-find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye)
+find_arcs_radius(Position2D start, float entrys, Position2D end, float entrye)
{
const auto getrad = [&](float leftOrRight) {
return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight));
@@ -151,7 +151,7 @@ find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye)
}
float
-find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd)
+find_arcs_radius(Position2D start, Position2D ad, Position2D end, Position2D bd)
{
// Short name functions for big forula
auto sqrt = [](float v) {