1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
// **********************************************************************
//
// Copyright (c) 2003-2004 ZeroC, Inc. All rights reserved.
//
// This copy of Ice is licensed to you under the terms described in the
// ICE_LICENSE file included in this distribution.
//
// **********************************************************************
#include <Glacier2/RequestQueue.h>
#include <set>
using namespace std;
using namespace Ice;
using namespace Glacier2;
Glacier2::Request::Request(const ObjectPrx& proxy, const ByteSeq& inParams, const Current& current,
bool forwardContext, const AMD_Object_ice_invokePtr& amdCB) :
_proxy(proxy),
_inParams(inParams),
_current(current),
_forwardContext(forwardContext),
_amdCB(amdCB)
{
//
// If this is not a twoway call, we can finish the AMD call right
// away.
//
if(!_proxy->ice_isTwoway())
{
bool ok = true;
ByteSeq outParams;
_amdCB->ice_response(ok, outParams);
}
Context::const_iterator p = current.ctx.find("_ovrd");
if(p != current.ctx.end())
{
const_cast<string&>(_override) = p->second;
}
}
void
Glacier2::Request::invoke()
{
bool ok;
ByteSeq outParams;
try
{
if(_forwardContext)
{
ok = _proxy->ice_invoke(_current.operation, _current.mode, _inParams, outParams, _current.ctx);
}
else
{
ok = _proxy->ice_invoke(_current.operation, _current.mode, _inParams, outParams);
}
if(_proxy->ice_isTwoway())
{
_amdCB->ice_response(ok, outParams);
}
}
catch(const LocalException& ex)
{
if(_proxy->ice_isTwoway())
{
_amdCB->ice_exception(ex);
}
}
}
bool
Glacier2::Request::override(const RequestPtr& other) const
{
//
// Both override values have to be non-empty.
//
if(_override.empty() || other->_override.empty())
{
return false;
}
//
// Override does not work for twoways, because a response is
// expected for each request.
//
if(_proxy->ice_isTwoway() || other->_proxy->ice_isTwoway())
{
return false;
}
//
// We cannot override if the proxies differ.
//
if(_proxy != other->_proxy)
{
return false;
}
return _override == other->_override;
}
bool
Glacier2::Request::isBatch() const
{
return _proxy->ice_batchOneway() || _proxy->ice_batchDatagram();
}
ConnectionPtr
Glacier2::Request::getConnection() const
{
return _proxy->ice_connection();
}
Glacier2::RequestQueue::RequestQueue(const IceUtil::Time& sleepTime) :
_sleepTime(sleepTime),
_destroy(false)
{
}
Glacier2::RequestQueue::~RequestQueue()
{
IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
assert(_destroy);
assert(_requests.empty());
}
void
Glacier2::RequestQueue::destroy()
{
{
IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
assert(!_destroy);
_destroy = true;
notify();
_requests.clear();
}
//
// We don't want to wait for the RequestQueue thread, because this
// destroy() operation is called when sessions expire or are
// destroyed, in which case we do not want the session handler
// thread to block here.
//
//getThreadControl().join();
if(getThreadControl().isAlive())
{
getThreadControl().detach();
}
}
bool
Glacier2::RequestQueue::addRequest(const RequestPtr& request)
{
IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
assert(!_destroy);
for(vector<RequestPtr>::iterator p = _requests.begin(); p != _requests.end(); ++p)
{
//
// If the new request overrides an old one, then abort the old
// request and replace it with the new request.
//
if(request->override(*p))
{
*p = request;
return true;
}
}
//
// No override, we add the new request.
//
_requests.push_back(request);
notify();
return false;
}
void
Glacier2::RequestQueue::run()
{
while(true)
{
vector<RequestPtr> requests;
{
IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
//
// Wait indefinitely if there's no requests to send.
//
while(!_destroy && _requests.empty())
{
wait();
}
if(_destroy)
{
return;
}
requests.swap(_requests);
}
//
// Send requests, flush batch requests, and sleep outside the
// thread synchronization, so that new messages can be added
// while this is being done.
//
set<ConnectionPtr> flushSet;
for(vector<RequestPtr>::const_iterator p = requests.begin(); p != requests.end(); ++p)
{
if((*p)->isBatch())
{
flushSet.insert((*p)->getConnection());
}
(*p)->invoke();
}
for(set<ConnectionPtr>::const_iterator q = flushSet.begin(); q != flushSet.end(); ++q)
{
try
{
for_each(flushSet.begin(), flushSet.end(), Ice::voidMemFun(&Connection::flushBatchRequests));
}
catch(const LocalException&)
{
// Ignore.
}
}
//
// In order to avoid flooding, we add a delay, if so
// requested.
//
if(_sleepTime > IceUtil::Time())
{
IceUtil::ThreadControl::sleep(_sleepTime);
}
}
}
|