1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#define BOOST_TEST_MODULE test_maths
#include "testHelpers.h"
#include <boost/test/data/test_case.hpp>
#include <boost/test/unit_test.hpp>
#include <glm/gtx/transform.hpp>
#include <stream_support.h>
#include <string_view>
#include <type_traits>
#include <game/network/link.h>
#include <gfx/gl/camera.h>
#include <glm/glm.hpp>
#include <maths.h>
#include <tuple>
using vecter_and_angle = std::tuple<glm::vec3, float>;
using angle_pair = std::tuple<float, float>;
//
// STANDARD DEFINITIONS
//
// (x, y) in the 2D plane of geographic coordinates.
// (x, y, z) in the 3D plane, where (x, y) are geographic and z is veritcal.
//
// (x, y, 0) is sea level
// (x, y, +ve) is "up"
static_assert(up.z > 0);
static_assert(down == -up);
// (x, +ve, z) is "north"
static_assert(north.y > 0);
static_assert(south == -north);
// (x, -ve, z) is "south"
static_assert(south.y < 0);
// (+ve, y, z) is "east"
static_assert(east.x > 0);
static_assert(west == -east);
// (-ve, y, z) is "west"
static_assert(west.x < 0);
//
// Therefore, the geographic world exists west -ve to east +ve and from south -ve to north +ve. Forward shall be
// considered +ve motion; the "front" of a vehicle shall have a +ve value in y axis.
//
// An unrotated vehicle shall be facing north, thus forward motion of the vehicle shall increase it's position in the y
// axis.
//
// Positive rotation on the XY plane (y member, yaw, around the down axis, as would be expected for vehicle or building
// on flat land) shall be clockwise, in radians. Cycles shall be considered equal; 0 == 2pi, pi == -pi, 1/4pi == -3/4pi.
BOOST_DATA_TEST_CASE(test_vector_yaw,
boost::unit_test::data::make<vecter_and_angle>(
{{up, 0}, {north, 0}, {south, pi}, {west, -half_pi}, {east, half_pi}, {north + east, quarter_pi},
{south + east, quarter_pi * 3}, {north + west, -quarter_pi}, {south + west, -quarter_pi * 3}}),
v, a)
{
BOOST_CHECK_CLOSE(vector_yaw(v), a, 1.F);
}
BOOST_DATA_TEST_CASE(test_angle_normalize,
boost::unit_test::data::make<angle_pair>({
{0, 0},
{two_pi, 0},
{-two_pi, 0},
{half_pi, half_pi},
{-half_pi, -half_pi},
{half_pi * 3, -half_pi},
{-half_pi * 3, half_pi},
}),
in, exp)
{
BOOST_CHECK_CLOSE(normalize(in), exp, 1);
}
// Positive rotation on the YZ plane (x member, pitch, around the east axis relative to its yaw, as would be expected
// for a vehicle travelling forward uphill), in radians. Cycles can be considered non-sense as even in the worst/best
// cases pitch beyond +/- 1/2pi would be crashing.
BOOST_DATA_TEST_CASE(test_vector_pitch,
boost::unit_test::data::make<vecter_and_angle>({
{north, 0},
{east, 0},
{south, 0},
{west, 0},
{north + up, quarter_pi},
{east + up, quarter_pi},
{south + up, quarter_pi},
{west + up, quarter_pi},
{north - up, -quarter_pi},
{east - up, -quarter_pi},
{south - up, -quarter_pi},
{west - up, -quarter_pi},
{north + west - up, -quarter_pi},
{north + west + up, quarter_pi},
}),
v, a)
{
BOOST_CHECK_CLOSE(vector_pitch(v), a, 1.F);
}
// Positive rotation on the ZX plane (z member, roll, around Y axis relative to its yaw and pitch, as would be expected
// for an aircraft banking/turning right), in radians. Cycles can be considered non-sense as even in the worst/best
// cases pitch beyond +/- 1/2pi would be crashing.
// The ILT functions rotate_yaw, rotate_pitch and rotate_roll provide a simple equivelent to glm::rotate around the
// stated axis.
const auto angs = boost::unit_test::data::make({pi, half_pi, two_pi, quarter_pi, -pi, -half_pi, -quarter_pi, 0.F})
* boost::unit_test::data::make(0);
const auto random_angs = boost::unit_test::data::random(-two_pi, two_pi) ^ boost::unit_test::data::xrange(1000);
const auto rots = boost::unit_test::data::make<std::tuple<glm::vec3, glm::mat4 (*)(float), std::string_view>>({
{down, rotate_yaw, "yaw"},
{east, rotate_pitch, "pitch"},
{north, rotate_roll, "roll"},
});
BOOST_DATA_TEST_CASE(test_rotations, (angs + random_angs) * rots, angle, ai, axis, ilt_func, name)
{
(void)ai;
BOOST_TEST_CONTEXT(name) {
const auto g {glm::rotate(angle, axis)}, ilt {ilt_func(angle)};
for (glm::length_t c = 0; c < 4; c++) {
BOOST_TEST_CONTEXT(c) {
for (glm::length_t r = 0; r < 4; r++) {
BOOST_TEST_CONTEXT(r) {
BOOST_CHECK_CLOSE(g[c][r], ilt[c][r], 0.0001);
}
}
}
}
}
}
// An arc shall be defined as a centre point, start point and end point. The arc shall progress positively from start to
// end in a clockwise manner. Arc start shall be the yaw from centre to start, arc end shall be greater than arc start.
using pos3_to_arc = std::tuple<glm::vec3, glm::vec3, glm::vec3, Arc>;
BOOST_DATA_TEST_CASE(test_create_arc,
boost::unit_test::data::make<pos3_to_arc>({
{{0, 0, 0}, north, east, {0, half_pi}},
{{0, 0, 0}, west, east, {-half_pi, half_pi}},
{{0, 0, 0}, south, east, {pi, half_pi * 5}},
{{0, 0, 0}, east, north, {half_pi, two_pi}},
{{0, 0, 0}, south, north, {pi, two_pi}},
{{0, 0, 0}, east, south, {half_pi, pi}},
}),
c, s, e, a)
{
const Arc arc {c, s, e};
BOOST_REQUIRE_LT(arc.first, arc.second);
BOOST_CHECK_CLOSE(arc.first, a.first, 1.F);
BOOST_CHECK_CLOSE(arc.second, a.second, 1.F);
}
using fac = std::tuple<glm::vec2, float, glm::vec2, float, glm::vec2, bool>;
BOOST_DATA_TEST_CASE(test_find_arc_centre,
boost::unit_test::data::make<fac>({
{{2, 2}, pi, {3, 3}, half_pi, {3, 2}, true},
{{2, 2}, pi, {1, 3}, -half_pi, {1, 2}, false},
{{-1100, -1000}, pi, {-900, -800}, half_pi, {-900, -1000}, true},
{{1100, 1000}, 0, {1050, 900}, pi + 0.92F, {973, 1000}, true},
{{1050, 900}, 0.92F, {1000, 800}, pi, {1127, 800}, false},
}),
s, es, e, ee, exp, lr)
{
const auto c = find_arc_centre(s, es, e, ee);
BOOST_CHECK_CLOSE(exp.x, c.first.x, 1);
BOOST_CHECK_CLOSE(exp.y, c.first.y, 1);
BOOST_CHECK_EQUAL(lr, c.second);
}
BOOST_AUTO_TEST_CASE(test_find_arcs_radius)
{
BOOST_CHECK_CLOSE(
find_arcs_radius(RelativePosition2D {10.32, 26.71}, {0.4, .92}, {2.92, 22.41}, {-0.89, -0.45}), 2.29, 1);
}
struct TestLinkStraight : public LinkStraight {
explicit TestLinkStraight(glm::vec3 v) :
Link {{std::make_shared<Node>(Position3D {}), vector_yaw(v)}, {std::make_shared<Node>(v), vector_yaw(-v)},
glm::length(v)}
{
}
};
using StraightsData = std::tuple<glm::vec3, float /*angFor*/, float /* angBack*/>;
BOOST_DATA_TEST_CASE(straight1,
boost::unit_test::data::make<StraightsData>({
{north, 0, pi},
{south, pi, 0},
{east, half_pi, -half_pi},
{west, -half_pi, half_pi},
}),
v, angFor, angBack)
{
const TestLinkStraight l(v);
{
const auto p = l.positionAt(0, 0);
BOOST_CHECK_EQUAL(p.pos, GlobalPosition3D {});
BOOST_CHECK_EQUAL(p.rot, glm::vec3(0, angFor, 0));
}
{
const auto p = l.positionAt(0, 1);
BOOST_CHECK_EQUAL(p.pos, GlobalPosition3D {v});
BOOST_CHECK_EQUAL(p.rot, glm::vec3(0, angBack, 0));
}
}
struct TestLinkCurve : public LinkCurve {
explicit TestLinkCurve(glm::vec3 e0, glm::vec3 e1, glm::vec3 ctr) :
Link {{std::make_shared<Node>(e0), normalize(vector_yaw(ctr - e0) - half_pi)},
{std::make_shared<Node>(e1), normalize(vector_yaw(ctr - e1) - half_pi)}, glm::length(e1 - e0)},
LinkCurve(ctr, glm::length(e0 - ctr), {ctr, e0, e1})
{
}
};
using CurvesData = std::tuple<glm::vec3 /*e1*/, glm::vec3 /*ctr*/, float /*angFor*/, float /* angBack*/>;
BOOST_DATA_TEST_CASE(curve1,
boost::unit_test::data::make<CurvesData>({
{north + east, east, 0, -half_pi},
{east * 2.F, east, 0, 0},
{south + east, east, 0, half_pi},
{south + west, west, pi, half_pi},
}),
e1, ctr, angFor, angBack)
{
{ // One-way...
const TestLinkCurve l({}, e1, ctr);
BOOST_CHECK_EQUAL(l.radius, 1.F);
{
const auto p = l.positionAt(0, 0);
BOOST_CHECK_CLOSE_VEC(RelativePosition3D {p.pos}, RelativePosition3D {});
BOOST_CHECK_CLOSE_VEC(p.rot, glm::vec3(0, angFor, 0));
}
{
const auto p = l.positionAt(0, 1);
BOOST_CHECK_CLOSE_VECI(RelativePosition3D {p.pos}, e1);
BOOST_CHECK_CLOSE_VECI(p.rot, glm::vec3(0, angBack, 0));
}
}
{ // The other way...
const TestLinkCurve l(e1, {}, ctr);
BOOST_CHECK_EQUAL(l.radius, 1.F);
{
const auto p = l.positionAt(0, 0);
const auto angForReversed = normalize(vector_yaw(-e1) * 2 - angFor);
BOOST_CHECK_CLOSE_VECI(RelativePosition3D {p.pos}, e1);
BOOST_CHECK_CLOSE_VECI(p.rot, glm::vec3(0, angForReversed, 0));
}
{
const auto p = l.positionAt(0, 1);
const auto angBackReversed = normalize(vector_yaw(e1) * 2 - angBack);
BOOST_CHECK_CLOSE_VEC(RelativePosition3D {p.pos}, Position3D {});
BOOST_CHECK_CLOSE_VEC(p.rot, glm::vec3(0, angBackReversed, 0));
}
}
}
BOOST_AUTO_TEST_CASE(camera_clicks)
{
Camera camera {{}, ::half_pi, 1.25F, 1000, 10000000};
constexpr float centre {0.5F}, right {0.9F}, left {0.1F}, top {1.F}, bottom {0.F};
camera.setForward(::north);
BOOST_CHECK_EQUAL(camera.unProject({centre, centre}).start, RelativePosition3D {});
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, centre}).direction, ::north);
BOOST_CHECK_CLOSE_VEC(camera.unProject({left, centre}).direction, glm::normalize(::north + ::west));
BOOST_CHECK_CLOSE_VEC(camera.unProject({right, centre}).direction, glm::normalize(::north + ::east));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, top}).direction, glm::normalize(::north + ::up));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, bottom}).direction, glm::normalize(::north + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({left, top}).direction, glm::normalize(::north + ::west + ::up));
BOOST_CHECK_CLOSE_VEC(camera.unProject({right, top}).direction, glm::normalize(::north + ::east + ::up));
BOOST_CHECK_CLOSE_VEC(camera.unProject({left, bottom}).direction, glm::normalize(::north + ::west + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({right, bottom}).direction, glm::normalize(::north + ::east + ::down));
camera.setForward(::east);
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, centre}).direction, ::east);
BOOST_CHECK_CLOSE_VEC(camera.unProject({left, centre}).direction, glm::normalize(::north + ::east));
BOOST_CHECK_CLOSE_VEC(camera.unProject({right, centre}).direction, glm::normalize(::south + ::east));
camera.setForward(glm::normalize(::north + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, centre}).direction, glm::normalize(::north + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, top}).direction, glm::normalize(::north));
camera.setForward(glm::normalize(::north + ::west + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, centre}).direction, glm::normalize(::north + ::west + ::down));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, top}).direction, glm::normalize(::north + ::west + ::up * 0.2F));
camera.setForward(glm::normalize(::north + ::west));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, centre}).direction, glm::normalize(::north + ::west));
BOOST_CHECK_CLOSE_VEC(camera.unProject({centre, top}).direction, glm::normalize(::north + ::west + ::up * 1.2F));
BOOST_CHECK_CLOSE_VEC(camera.unProject({right, centre}).direction, glm::normalize(::north));
BOOST_CHECK_CLOSE_VEC(camera.unProject({left, centre}).direction, glm::normalize(::west));
}
template<typename T = float>
auto
n_test_points_between(std::size_t n = 2, T min = -100.F, T max = 100.F)
{
return boost::unit_test::data::xrange(n) ^ boost::unit_test::data::random(min, max);
}
BOOST_DATA_TEST_CASE(rayLineDistance,
n_test_points_between() * // n1x
n_test_points_between() * // n1y
n_test_points_between() * // n1z
n_test_points_between() * // n2x
n_test_points_between() * // n2y
n_test_points_between() * // n2z
n_test_points_between() * // cx
n_test_points_between() * // cy
n_test_points_between(), // cz
i1, n1x, i2, n1y, i3, n1z, i4, n2x, i5, n2y, i6, n2z, i7, cx, i8, cy, i9, cz)
{
(void)i1;
(void)i2;
(void)i3;
(void)i4;
(void)i5;
(void)i6;
(void)i7;
(void)i8;
(void)i9;
const glm::vec3 n1 {n1x, n1y, n1z}, n2 {n2x, n2y, n2z}, c {cx, cy, cz};
const auto nstep = n2 - n1;
for (float along = 0.2F; along <= 0.8F; along += 0.1F) {
const auto target = n1 + (along * nstep);
const auto direction = glm::normalize(target - c);
BOOST_CHECK_LE(Ray(c, direction).distanceToLine(n1, n2), 0.01F);
}
}
|