1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
|
#pragma once
#include "config/types.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include <numeric>
#include <optional>
#include <stdexcept>
#include <utility>
template<typename T>
concept Arithmetic = std::is_arithmetic_v<T>;
struct Arc : public std::pair<Angle, Angle> {
template<glm::length_t Lc, glm::length_t Le, Arithmetic T, glm::qualifier Q>
requires(Lc >= 2, Le >= 2)
Arc(const glm::vec<Lc, T, Q> & centre, const glm::vec<Le, T, Q> & e0p, const glm::vec<Le, T, Q> & e1p) :
Arc {RelativePosition2D {e0p.xy() - centre.xy()}, RelativePosition2D {e1p.xy() - centre.xy()}}
{
}
Arc(const RelativePosition2D & dir0, const RelativePosition2D & dir1);
Arc(Angle anga, Angle angb);
auto
operator[](bool getSecond) const
{
return getSecond ? second : first;
}
[[nodiscard]] constexpr float
length() const
{
return second - first;
}
};
template<typename T, glm::qualifier Q = glm::defaultp> struct ArcSegment : public Arc {
using PointType = glm::vec<2, T, Q>;
constexpr ArcSegment(PointType centre, PointType ep0, PointType ep1);
PointType centre;
PointType ep0;
PointType ep1;
RelativeDistance radius;
[[nodiscard]] constexpr std::optional<glm::vec<2, T, Q>> crossesLineAt(
const glm::vec<2, T, Q> & lineStart, const glm::vec<2, T, Q> & lineEnd) const;
[[nodiscard]] constexpr bool
angleWithinArc(Angle angle) const
{
return first <= angle && angle <= second;
}
};
constexpr const RelativePosition3D up {0, 0, 1}; // NOLINT(readability-identifier-length)
constexpr const RelativePosition3D down {0, 0, -1};
constexpr const RelativePosition3D north {0, 1, 0};
constexpr const RelativePosition3D south {0, -1, 0};
constexpr const RelativePosition3D east {1, 0, 0};
constexpr const RelativePosition3D west {-1, 0, 0};
constexpr auto half_pi {glm::half_pi<float>()};
constexpr auto quarter_pi {half_pi / 2};
constexpr auto pi {glm::pi<float>()}; // NOLINT(readability-identifier-length)
constexpr auto two_pi {glm::two_pi<float>()};
constexpr auto degreesToRads = pi / 180.F;
constexpr auto earthMeanRadius = 6371.01F; // In km
constexpr auto astronomicalUnit = 149597890.F; // In km
template<glm::length_t D>
constexpr GlobalPosition<D>
operator+(const GlobalPosition<D> & global, const RelativePosition<D> & relative)
{
return global + GlobalPosition<D>(glm::round(relative));
}
template<glm::length_t D>
constexpr GlobalPosition<D>
operator+(const GlobalPosition<D> & global, const CalcPosition<D> & relative)
{
return global + GlobalPosition<D>(relative);
}
template<glm::length_t D>
constexpr GlobalPosition<D>
operator-(const GlobalPosition<D> & global, const RelativePosition<D> & relative)
{
return global - GlobalPosition<D>(glm::round(relative));
}
template<glm::length_t D>
constexpr GlobalPosition<D>
operator-(const GlobalPosition<D> & global, const CalcPosition<D> & relative)
{
return global - GlobalPosition<D>(relative);
}
template<glm::length_t D, Arithmetic T, glm::qualifier Q>
using DifferenceVector = glm::vec<D, std::conditional_t<std::is_floating_point_v<T>, T, float>, Q>;
template<glm::length_t D, Arithmetic T, glm::qualifier Q>
constexpr DifferenceVector<D, T, Q>
difference(const glm::vec<D, T, Q> & globalA, const glm::vec<D, T, Q> & globalB)
{
return globalA - globalB;
}
glm::mat4 flat_orientation(const Rotation3D & diff);
namespace {
// Helpers
// C++ wrapper for C's sincosf, but with references, not pointers
template<std::floating_point T>
constexpr void
sincos(T angle, T & sinOut, T & cosOut)
{
if consteval {
sinOut = std::sin(angle);
cosOut = std::cos(angle);
}
else {
if constexpr (std::is_same_v<T, float>) {
::sincosf(angle, &sinOut, &cosOut);
}
else if constexpr (std::is_same_v<T, double>) {
::sincos(angle, &sinOut, &cosOut);
}
else if constexpr (std::is_same_v<T, long double>) {
::sincosl(angle, &sinOut, &cosOut);
}
}
}
template<std::floating_point T, glm::qualifier Q = glm::qualifier::defaultp>
constexpr auto
sincos(const T angle)
{
glm::vec<2, T, Q> sincosOut {};
sincos(angle, sincosOut.x, sincosOut.y);
return sincosOut;
}
// Helper to lookup into a matrix given an xy vector coordinate
template<glm::length_t C, glm::length_t R, Arithmetic T, glm::qualifier Q, std::integral I = glm::length_t>
constexpr auto &
operator^(glm::mat<C, R, T, Q> & matrix, const glm::vec<2, I> rowCol)
{
return matrix[rowCol.x][rowCol.y];
}
// Create a matrix for the angle, given the targets into the matrix
template<glm::length_t D, std::floating_point T, glm::qualifier Q, std::integral I = glm::length_t>
constexpr auto
rotation(const T angle, const glm::vec<2, I> cos1, const glm::vec<2, I> sin1, const glm::vec<2, I> cos2,
const glm::vec<2, I> negSin1)
{
glm::mat<D, D, T, Q> out(1);
sincos(angle, out ^ sin1, out ^ cos1);
out ^ cos2 = out ^ cos1;
out ^ negSin1 = -(out ^ sin1);
return out;
}
}
// Create a flat transformation matrix
template<glm::length_t D = 2, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 2)
constexpr auto
rotate_flat(const T angle)
{
return rotation<D, T, Q>(angle, {0, 0}, {0, 1}, {1, 1}, {1, 0});
}
// Create a yaw transformation matrix
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 2)
constexpr auto
rotate_yaw(const T angle)
{
return rotation<D, T, Q>(angle, {0, 0}, {1, 0}, {1, 1}, {0, 1});
}
// Create a roll transformation matrix
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
rotate_roll(const T angle)
{
return rotation<D, T, Q>(angle, {0, 0}, {2, 0}, {2, 2}, {0, 2});
}
// Create a pitch transformation matrix
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
rotate_pitch(const T angle)
{
return rotation<D, T, Q>(angle, {1, 1}, {1, 2}, {2, 2}, {2, 1});
}
// Create a combined yaw, pitch, roll transformation matrix
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
rotate_ypr(const glm::vec<3, T, Q> & angles)
{
return rotate_yaw<D>(angles.y) * rotate_pitch<D>(angles.x) * rotate_roll<D>(angles.z);
}
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
rotate_yp(const T yaw, const T pitch)
{
return rotate_yaw<D>(yaw) * rotate_pitch<D>(pitch);
}
template<glm::length_t D = 3, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
rotate_yp(const glm::vec<2, T, Q> & angles)
{
return rotate_yp<D>(angles.y, angles.x);
}
template<glm::length_t D, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 2)
constexpr auto
vector_yaw(const glm::vec<D, T, Q> & diff)
{
return std::atan2(diff.x, diff.y);
}
template<glm::length_t D, glm::qualifier Q = glm::qualifier::defaultp, std::floating_point T>
requires(D >= 3)
constexpr auto
vector_pitch(const glm::vec<D, T, Q> & diff)
{
return std::atan(diff.z);
}
template<Arithmetic T, glm::qualifier Q>
constexpr glm::vec<2, T, Q>
vector_normal(const glm::vec<2, T, Q> & vector)
{
return {-vector.y, vector.x};
};
template<std::floating_point T>
constexpr auto
round_frac(const T value, const T frac)
{
return std::round(value / frac) * frac;
}
template<Arithmetic T>
requires requires(T value) { value * value; }
constexpr auto
sq(T value)
{
return value * value;
}
template<glm::qualifier Q>
constexpr glm::vec<3, int64_t, Q>
crossProduct(const glm::vec<3, int64_t, Q> & valueA, const glm::vec<3, int64_t, Q> & valueB)
{
return {
(valueA.y * valueB.z) - (valueA.z * valueB.y),
(valueA.z * valueB.x) - (valueA.x * valueB.z),
(valueA.x * valueB.y) - (valueA.y * valueB.x),
};
}
template<std::integral T, glm::qualifier Q>
constexpr glm::vec<3, T, Q>
crossProduct(const glm::vec<3, T, Q> & valueA, const glm::vec<3, T, Q> & valueB)
{
return crossProduct<Q>(valueA, valueB);
}
template<std::floating_point T, glm::qualifier Q>
constexpr glm::vec<3, T, Q>
crossProduct(const glm::vec<3, T, Q> & valueA, const glm::vec<3, T, Q> & valueB)
{
return glm::cross(valueA, valueB);
}
template<Arithmetic R = float, Arithmetic Ta, Arithmetic Tb>
constexpr auto
ratio(const Ta valueA, const Tb valueB)
{
using Common = std::common_type_t<Ta, Ta>;
return static_cast<R>((static_cast<Common>(valueA) / static_cast<Common>(valueB)));
}
template<Arithmetic R = float, Arithmetic T, glm::qualifier Q>
constexpr auto
ratio(const glm::vec<2, T, Q> & value)
{
return ratio<R>(value.x, value.y);
}
template<glm::length_t L = 3, std::floating_point T, glm::qualifier Q>
constexpr auto
perspective_divide(const glm::vec<4, T, Q> & value)
{
return value / value.w;
}
template<glm::length_t L1, glm::length_t L2, Arithmetic T, glm::qualifier Q>
constexpr glm::vec<L1 + L2, T, Q>
operator||(const glm::vec<L1, T, Q> valueA, const glm::vec<L2, T, Q> valueB)
{
return {valueA, valueB};
}
template<glm::length_t L, Arithmetic T, glm::qualifier Q>
constexpr glm::vec<L + 1, T, Q>
operator||(const glm::vec<L, T, Q> valueA, const T valueB)
{
return {valueA, valueB};
}
template<glm::length_t L, std::floating_point T, glm::qualifier Q>
constexpr glm::vec<L, T, Q>
perspectiveMultiply(const glm::vec<L, T, Q> & base, const glm::mat<L + 1, L + 1, T, Q> & mutation)
{
const auto mutated = mutation * (base || T(1));
return mutated / mutated.w;
}
template<glm::length_t L, std::floating_point T, glm::qualifier Q>
constexpr glm::vec<L, T, Q>
perspectiveApply(glm::vec<L, T, Q> & base, const glm::mat<L + 1, L + 1, T, Q> & mutation)
{
return base = perspectiveMultiply(base, mutation);
}
template<std::floating_point T>
constexpr T
normalize(T ang)
{
while (ang > glm::pi<T>()) {
ang -= glm::two_pi<T>();
}
while (ang <= -glm::pi<T>()) {
ang += glm::two_pi<T>();
}
return ang;
}
template<Arithmetic T> using CalcType = std::conditional_t<std::is_floating_point_v<T>, T, int64_t>;
template<Arithmetic T, glm::qualifier Q = glm::defaultp>
[[nodiscard]] constexpr std::optional<glm::vec<2, T, Q>>
linesIntersectAt(const glm::vec<2, T, Q> Aabs, const glm::vec<2, T, Q> Babs, const glm::vec<2, T, Q> Cabs,
const glm::vec<2, T, Q> Dabs)
{
using CT = CalcType<T>;
using CVec = glm::vec<2, CT, Q>;
// Line AB represented as a1x + b1y = c1
const CVec Brel = Babs - Aabs;
const CT a1 = Brel.y;
const CT b1 = -Brel.x;
// Line CD represented as a2x + b2y = c2
const CVec Crel = Cabs - Aabs, Del = Dabs - Aabs;
const CT a2 = Del.y - Crel.y;
const CT b2 = Crel.x - Del.x;
const CT c2 = (a2 * Crel.x) + (b2 * Crel.y);
const auto determinant = (a1 * b2) - (a2 * b1);
if (determinant == 0) {
return std::nullopt;
}
return Aabs + CVec {(b1 * c2) / -determinant, (a1 * c2) / determinant};
}
template<Arithmetic T, glm::qualifier Q>
std::pair<glm::vec<2, T, Q>, bool>
find_arc_centre(glm::vec<2, T, Q> start, Rotation2D startDir, glm::vec<2, T, Q> end, Rotation2D endDir)
{
const auto det = endDir.x * startDir.y - endDir.y * startDir.x;
if (det != 0) { // near parallel line will yield noisy results
const glm::vec<2, RelativeDistance, Q> d = end - start;
const auto u = (d.y * endDir.x - d.x * endDir.y) / det;
return {start + glm::vec<2, T, Q>(startDir * u), u < 0};
}
throw std::runtime_error("no intersection");
}
template<Arithmetic T, glm::qualifier Q>
std::pair<glm::vec<2, T, Q>, bool>
find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye)
{
if (start == end) {
return {start, false};
}
return find_arc_centre(start, sincos(entrys + half_pi), end, sincos(entrye - half_pi));
}
template<Arithmetic T, glm::qualifier Q>
Angle
find_arcs_radius(glm::vec<2, T, Q> start, Rotation2D ad, glm::vec<2, T, Q> end, Rotation2D bd)
{
using std::sqrt;
// Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r
// (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2
// According to symbolabs.com equation tool, that solves for r to give:
// r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4
// (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y
// W+W^(2)-4))
// Locally simplified to work relative, removing one half of the problem and operating on relative positions.
// These exist cos limitations of online formula rearrangement, and I'm OK with that.
const RelativePosition2D diff {end - start};
const auto &o {diff.x}, &p {diff.y};
const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y};
return (-2 * X * o + 2 * o * Z - 2 * Y * p + 2 * p * W
- sqrt(sq(2 * X * o - 2 * o * Z + 2 * Y * p - 2 * p * W)
- (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) * (sq(o) + sq(p)))))
/ (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4));
}
template<Arithmetic T, glm::qualifier Q>
std::pair<Angle, Angle>
find_arcs_radius(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye)
{
const auto getrad = [&](auto leftOrRight) {
return find_arcs_radius(start, sincos(entrys + leftOrRight), end, sincos(entrye + leftOrRight));
};
return {getrad(-half_pi), getrad(half_pi)};
}
template<Arithmetic T>
auto
midpoint(const std::pair<T, T> & v)
{
return std::midpoint(v.first, v.second);
}
template<glm::length_t D, std::integral T, glm::qualifier Q>
auto
midpoint(const glm::vec<D, T, Q> & valueA, const glm::vec<D, T, Q> & valueB)
{
return valueA + (valueB - valueA) / 2;
}
// std::pow is not constexpr
template<Arithmetic T>
requires requires(T n) { n *= n; }
constexpr T
pow(const T base, std::integral auto exp)
{
T res {1};
while (exp--) {
res *= base;
}
return res;
}
// Conversions
template<Arithmetic T>
constexpr auto
mph_to_ms(T v)
{
return v / 2.237L;
}
template<Arithmetic T>
constexpr auto
kph_to_ms(T v)
{
return v / 3.6L;
}
// ... literals are handy for now, probably go away when we load stuff externally
float operator"" _mph(const long double v);
float operator"" _kph(const long double v);
constexpr float
operator"" _degrees(long double degrees)
{
return static_cast<float>(degrees) * degreesToRads;
}
// Late implementations due to dependencies
template<typename T, glm::qualifier Q>
constexpr ArcSegment<T, Q>::ArcSegment(PointType centre, PointType ep0, PointType ep1) :
Arc {centre, ep0, ep1}, centre {centre}, ep0 {ep0}, ep1 {ep1}, radius {glm::length(difference(centre, ep0))}
{
}
template<typename T, glm::qualifier Q>
[[nodiscard]] constexpr std::optional<glm::vec<2, T, Q>>
ArcSegment<T, Q>::crossesLineAt(const glm::vec<2, T, Q> & lineStart, const glm::vec<2, T, Q> & lineEnd) const
{
// Based on formulas from https://mathworld.wolfram.com/Circle-LineIntersection.html
const auto lineDiff = difference(lineEnd, lineStart);
const auto lineLen = glm::length(lineDiff);
const auto lineRelStart = difference(lineStart, centre);
const auto lineRelEnd = difference(lineEnd, centre);
const auto determinant = (lineRelStart.x * lineRelEnd.y) - (lineRelEnd.x * lineRelStart.y);
const auto discriminant = (radius * radius * lineLen * lineLen) - (determinant * determinant);
if (discriminant < 0) {
return std::nullopt;
}
const auto rootDiscriminant = std::sqrt(discriminant);
const auto drdr = lineLen * lineLen;
const RelativeDistance sgn = (lineDiff.y < 0 ? -1 : 1);
std::array points {
RelativePosition2D {((determinant * lineDiff.y) + sgn * lineDiff.x * rootDiscriminant),
((-determinant * lineDiff.x) + std::abs(lineDiff.y) * rootDiscriminant)}
/ drdr,
RelativePosition2D {((determinant * lineDiff.y) - sgn * lineDiff.x * rootDiscriminant),
((-determinant * lineDiff.x) - std::abs(lineDiff.y) * rootDiscriminant)}
/ drdr,
};
const auto end
= std::remove_if(points.begin(), points.end(), [this, lineRelStart, lineDiff, drdr](const auto point) {
const auto dot = glm::dot(lineDiff, point - lineRelStart);
return !angleWithinArc(vector_yaw(point)) || dot < 0 || dot > drdr;
});
if (points.begin() == end) {
return std::nullopt;
}
return centre + *std::ranges::min_element(points.begin(), end, {}, [lineRelStart](const auto point) {
return glm::distance(lineRelStart, point);
});
}
|