1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
#include "terrain2.h"
#include <fstream>
TerrainMesh::TerrainMesh(const std::filesystem::path & input)
{
size_t ncols = 0, nrows = 0, xllcorner = 0, yllcorner = 0, cellsize = 0;
std::map<std::string_view, size_t *> properties {
{"ncols", &ncols},
{"nrows", &nrows},
{"xllcorner", &xllcorner},
{"yllcorner", &yllcorner},
{"cellsize", &cellsize},
};
std::ifstream f {input};
while (!properties.empty()) {
std::string property;
f >> property;
f >> *properties.at(property);
properties.erase(property);
}
std::vector<VertexHandle> vertices;
vertices.reserve(ncols * nrows);
for (size_t row = 0; row < nrows; ++row) {
for (size_t col = 0; col < ncols; ++col) {
float height = 0;
f >> height;
vertices.push_back(add_vertex({xllcorner + (col * cellsize), yllcorner + (row * cellsize), height}));
}
}
if (!f.good()) {
throw std::runtime_error("Couldn't read terrain file");
}
for (size_t row = 1; row < nrows; ++row) {
for (size_t col = 1; col < ncols; ++col) {
add_face({
vertices[ncols * (row - 1) + (col - 1)],
vertices[ncols * (row - 0) + (col - 0)],
vertices[ncols * (row - 0) + (col - 1)],
});
add_face({
vertices[ncols * (row - 1) + (col - 1)],
vertices[ncols * (row - 1) + (col - 0)],
vertices[ncols * (row - 0) + (col - 0)],
});
}
}
update_face_normals();
update_vertex_normals();
};
OpenMesh::FaceHandle
TerrainMesh::findPoint(glm::vec2 p) const
{
return findPoint(p, *faces_begin());
}
bool
TerrainMesh::locate(const TerrainMesh::PointFace & pointFace, FaceHandle start) const
{
if (pointFace.face.is_valid()) {
assert(triangleContainsPoint(pointFace.point, pointFace.face));
return true;
}
else {
return (pointFace.face = findPoint(pointFace.point, start)).is_valid();
}
}
bool
TerrainMesh::locate(const TerrainMesh::PointFace & pointFace) const
{
return locate(pointFace, *faces_begin());
}
namespace {
[[nodiscard]] constexpr inline bool
pointLeftOfLine(const glm::vec2 p, const glm::vec2 e1, const glm::vec2 e2)
{
return (e2.x - e1.x) * (p.y - e1.y) > (e2.y - e1.y) * (p.x - e1.x);
}
static_assert(pointLeftOfLine({1, 2}, {1, 1}, {2, 2}));
static_assert(pointLeftOfLine({2, 1}, {2, 2}, {1, 1}));
static_assert(pointLeftOfLine({2, 2}, {1, 2}, {2, 1}));
static_assert(pointLeftOfLine({1, 1}, {2, 1}, {1, 2}));
[[nodiscard]] constexpr inline bool
linesCross(const glm::vec2 a1, const glm::vec2 a2, const glm::vec2 b1, const glm::vec2 b2)
{
return pointLeftOfLine(a2, b1, b2) && pointLeftOfLine(a1, b2, b1) && pointLeftOfLine(b1, a1, a2)
&& pointLeftOfLine(b2, a2, a1);
}
static_assert(linesCross({1, 1}, {2, 2}, {1, 2}, {2, 1}));
}
OpenMesh::FaceHandle
TerrainMesh::findPoint(glm::vec2 p, OpenMesh::FaceHandle f) const
{
ConstFaceVertexIter vertices;
while (f.is_valid() && !triangleContainsPoint(p, vertices = cfv_iter(f))) {
for (auto next = cfh_iter(f); next.is_valid(); ++next) {
f = opposite_face_handle(*next);
if (f.is_valid()) {
const auto e1 = point(to_vertex_handle(*next));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(*next)));
if (pointLeftOfLine(p, e1, e2)) {
break;
}
}
f.reset();
}
}
return f;
}
void
TerrainMesh::walk(const PointFace & from, const glm::vec2 to, const std::function<void(FaceHandle)> & op) const
{
walkUntil(from, to, [&op](const auto & fh) {
op(fh);
return false;
});
}
void
TerrainMesh::walkUntil(const PointFace & from, const glm::vec2 to, const std::function<bool(FaceHandle)> & op) const
{
locate(from);
assert(from.face.is_valid()); // TODO replace with a boundary search
auto f = from.face;
FaceHandle previousFace;
while (f.is_valid() && !op(f)) {
for (auto next = cfh_iter(f); next.is_valid(); ++next) {
f = opposite_face_handle(*next);
if (f.is_valid() && f != previousFace) {
const auto e1 = point(to_vertex_handle(*next));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(*next)));
if (linesCross(from.point, to, e1, e2)) {
previousFace = f;
break;
}
}
f.reset();
}
}
}
bool
TerrainMesh::triangleContainsPoint(const glm::vec2 p, const glm::vec2 a, const glm::vec2 b, const glm::vec2 c)
{
const auto det = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
return det * ((b.x - a.x) * (p.y - a.y) - (b.y - a.y) * (p.x - a.x)) >= 0
&& det * ((c.x - b.x) * (p.y - b.y) - (c.y - b.y) * (p.x - b.x)) >= 0
&& det * ((a.x - c.x) * (p.y - c.y) - (a.y - c.y) * (p.x - c.x)) >= 0;
}
bool
TerrainMesh::triangleContainsPoint(const glm::vec2 p, FaceHandle face) const
{
return triangleContainsPoint(p, cfv_iter(face));
}
bool
TerrainMesh::triangleContainsPoint(const glm::vec2 p, ConstFaceVertexIter vertices) const
{
return triangleContainsPoint(p, point(*vertices++), point(*vertices++), point(*vertices++));
}
|