1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
#include "geoData.h"
#include "collections.h"
#include "geometricPlane.h"
#include <fstream>
#include <glm/gtx/intersect.hpp>
#include <maths.h>
#include <ranges>
#include <set>
GeoData
GeoData::loadFromAsciiGrid(const std::filesystem::path & input)
{
size_t ncols = 0, nrows = 0, xllcorner = 0, yllcorner = 0, cellsize = 0;
std::map<std::string_view, size_t *> properties {
{"ncols", &ncols},
{"nrows", &nrows},
{"xllcorner", &xllcorner},
{"yllcorner", &yllcorner},
{"cellsize", &cellsize},
};
std::ifstream f {input};
while (!properties.empty()) {
std::string property;
f >> property;
f >> *properties.at(property);
properties.erase(property);
}
xllcorner *= 1000;
yllcorner *= 1000;
cellsize *= 1000;
std::vector<VertexHandle> vertices;
vertices.reserve(ncols * nrows);
GeoData mesh;
mesh.lowerExtent = {xllcorner, yllcorner, std::numeric_limits<GlobalDistance>::max()};
mesh.upperExtent = {xllcorner + (cellsize * (ncols - 1)), yllcorner + (cellsize * (nrows - 1)),
std::numeric_limits<GlobalDistance>::min()};
for (size_t row = 0; row < nrows; ++row) {
for (size_t col = 0; col < ncols; ++col) {
float heightf = 0;
f >> heightf;
const auto height = static_cast<GlobalDistance>(std::round(heightf * 1000.F));
mesh.upperExtent.z = std::max(mesh.upperExtent.z, height);
mesh.lowerExtent.z = std::min(mesh.lowerExtent.z, height);
vertices.push_back(mesh.add_vertex({xllcorner + (col * cellsize), yllcorner + (row * cellsize), height}));
}
}
if (!f.good()) {
throw std::runtime_error("Couldn't read terrain file");
}
for (size_t row = 1; row < nrows; ++row) {
for (size_t col = 1; col < ncols; ++col) {
mesh.add_face({
vertices[ncols * (row - 1) + (col - 1)],
vertices[ncols * (row - 0) + (col - 0)],
vertices[ncols * (row - 0) + (col - 1)],
});
mesh.add_face({
vertices[ncols * (row - 1) + (col - 1)],
vertices[ncols * (row - 1) + (col - 0)],
vertices[ncols * (row - 0) + (col - 0)],
});
}
}
mesh.generation++;
mesh.updateAllVertexNormals();
return mesh;
};
constexpr static GlobalDistance GRID_SIZE = 10'000;
GeoData
GeoData::createFlat(GlobalPosition2D lower, GlobalPosition2D upper, GlobalDistance h)
{
assert((upper - lower) % GRID_SIZE == GlobalPosition2D {});
GeoData mesh;
mesh.lowerExtent = {lower, h};
mesh.upperExtent = {upper, h};
std::vector<VertexHandle> vertices;
for (GlobalDistance row = lower.x; row <= upper.x; row += GRID_SIZE) {
for (GlobalDistance col = lower.y; col <= upper.y; col += GRID_SIZE) {
vertices.push_back(mesh.add_vertex({col, row, h}));
}
}
const auto n = glm::vec<2, size_t> {((upper - lower) / GRID_SIZE) + 1};
for (auto row = 1U; row < n.x; ++row) {
for (auto col = 1U; col < n.y; ++col) {
mesh.add_face({
vertices[n.y * (row - 1) + (col - 1)],
vertices[n.y * (row - 0) + (col - 0)],
vertices[n.y * (row - 0) + (col - 1)],
});
mesh.add_face({
vertices[n.y * (row - 1) + (col - 1)],
vertices[n.y * (row - 1) + (col - 0)],
vertices[n.y * (row - 0) + (col - 0)],
});
}
}
mesh.updateAllVertexNormals();
mesh.generation++;
return mesh;
}
OpenMesh::FaceHandle
GeoData::findPoint(GlobalPosition2D p) const
{
return findPoint(p, *faces_sbegin());
}
GeoData::PointFace::PointFace(const GlobalPosition2D p, const GeoData * mesh) :
PointFace {p, mesh, *mesh->faces_sbegin()}
{
}
GeoData::PointFace::PointFace(const GlobalPosition2D p, const GeoData * mesh, FaceHandle start) :
PointFace {p, mesh->findPoint(p, start)}
{
}
GeoData::FaceHandle
GeoData::PointFace::face(const GeoData * mesh, FaceHandle start) const
{
if (_face.is_valid()) {
assert(mesh->triangleContainsPoint(point, _face));
return _face;
}
else {
return (_face = mesh->findPoint(point, start));
}
}
GeoData::FaceHandle
GeoData::PointFace::face(const GeoData * mesh) const
{
return face(mesh, *mesh->faces_sbegin());
}
namespace {
template<template<typename> typename Op>
[[nodiscard]] constexpr inline auto
pointLineOp(const GlobalPosition2D p, const GlobalPosition2D e1, const GlobalPosition2D e2)
{
return Op {}(CalcDistance(e2.x - e1.x) * CalcDistance(p.y - e1.y),
CalcDistance(e2.y - e1.y) * CalcDistance(p.x - e1.x));
}
constexpr auto pointLeftOfLine = pointLineOp<std::greater>;
constexpr auto pointLeftOfOrOnLine = pointLineOp<std::greater_equal>;
static_assert(pointLeftOfLine({1, 2}, {1, 1}, {2, 2}));
static_assert(pointLeftOfLine({2, 1}, {2, 2}, {1, 1}));
static_assert(pointLeftOfLine({2, 2}, {1, 2}, {2, 1}));
static_assert(pointLeftOfLine({1, 1}, {2, 1}, {1, 2}));
static_assert(pointLeftOfOrOnLine({310000000, 490000000}, {310000000, 490000000}, {310050000, 490050000}));
static_assert(pointLeftOfOrOnLine({310000000, 490000000}, {310050000, 490050000}, {310000000, 490050000}));
static_assert(pointLeftOfOrOnLine({310000000, 490000000}, {310000000, 490050000}, {310000000, 490000000}));
[[nodiscard]] constexpr inline bool
linesCross(
const GlobalPosition2D a1, const GlobalPosition2D a2, const GlobalPosition2D b1, const GlobalPosition2D b2)
{
return (pointLeftOfLine(a2, b1, b2) == pointLeftOfLine(a1, b2, b1))
&& (pointLeftOfLine(b1, a1, a2) == pointLeftOfLine(b2, a2, a1));
}
static_assert(linesCross({1, 1}, {2, 2}, {1, 2}, {2, 1}));
static_assert(linesCross({2, 2}, {1, 1}, {1, 2}, {2, 1}));
[[nodiscard]] constexpr inline bool
linesCrossLtR(
const GlobalPosition2D a1, const GlobalPosition2D a2, const GlobalPosition2D b1, const GlobalPosition2D b2)
{
return pointLeftOfLine(a2, b1, b2) && pointLeftOfLine(a1, b2, b1) && pointLeftOfLine(b1, a1, a2)
&& pointLeftOfLine(b2, a2, a1);
}
static_assert(linesCrossLtR({1, 1}, {2, 2}, {1, 2}, {2, 1}));
static_assert(!linesCrossLtR({2, 2}, {1, 1}, {1, 2}, {2, 1}));
constexpr GlobalPosition3D
positionOnTriangle(const GlobalPosition2D point, const GeoData::Triangle<3> & t)
{
const CalcPosition3D a = t[1] - t[0], b = t[2] - t[0];
const auto n = crossProduct(a, b);
return {point, ((n.x * t[0].x) + (n.y * t[0].y) + (n.z * t[0].z) - (n.x * point.x) - (n.y * point.y)) / n.z};
}
static_assert(positionOnTriangle({7, -2}, {{1, 2, 3}, {1, 0, 1}, {-2, 1, 0}}) == GlobalPosition3D {7, -2, 3});
}
OpenMesh::FaceHandle
GeoData::findPoint(GlobalPosition2D p, OpenMesh::FaceHandle f) const
{
while (f.is_valid() && !triangleContainsPoint(p, triangle<2>(f))) {
for (auto next = cfh_iter(f); next.is_valid(); ++next) {
f = opposite_face_handle(*next);
if (f.is_valid()) {
const auto e1 = point(to_vertex_handle(*next));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(*next)));
if (pointLeftOfLine(p, e1, e2)) {
break;
}
}
f.reset();
}
}
return f;
}
GlobalPosition3D
GeoData::positionAt(const PointFace & p) const
{
return positionOnTriangle(p.point, triangle<3>(p.face(this)));
}
[[nodiscard]] GeoData::IntersectionResult
GeoData::intersectRay(const Ray<GlobalPosition3D> & ray) const
{
return intersectRay(ray, findPoint(ray.start));
}
[[nodiscard]] GeoData::IntersectionResult
GeoData::intersectRay(const Ray<GlobalPosition3D> & ray, FaceHandle face) const
{
GeoData::IntersectionResult out;
walkUntil(PointFace {ray.start, face},
ray.start.xy() + (ray.direction.xy() * RelativePosition2D(upperExtent.xy() - lowerExtent.xy())),
[&out, &ray, this](const auto & step) {
BaryPosition bari {};
RelativeDistance dist {};
const auto t = triangle<3>(step.current);
if (ray.intersectTriangle(t.x, t.y, t.z, bari, dist)) {
out.emplace(t * bari, step.current);
return true;
}
return false;
});
return out;
}
void
GeoData::walk(const PointFace & from, const GlobalPosition2D to, Consumer<WalkStep> op) const
{
walkUntil(from, to, [&op](const auto & fh) {
op(fh);
return false;
});
}
void
GeoData::walkUntil(const PointFace & from, const GlobalPosition2D to, Tester<WalkStep> op) const
{
WalkStep step {
.current = from.face(this),
};
if (!step.current.is_valid()) {
const auto entryEdge = findEntry(from.point, to);
if (!entryEdge.is_valid()) {
return;
}
step.current = opposite_face_handle(entryEdge);
}
while (step.current.is_valid() && !op(step)) {
step.previous = step.current;
for (const auto next : fh_range(step.current)) {
step.current = opposite_face_handle(next);
if (step.current.is_valid() && step.current != step.previous) {
const auto e1 = point(to_vertex_handle(next));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(next)));
if (linesCrossLtR(from.point, to, e1, e2)) {
step.exitHalfedge = next;
step.exitPosition = linesIntersectAt(from.point.xy(), to.xy(), e1.xy(), e2.xy()).value();
break;
}
}
step.current.reset();
}
}
}
void
GeoData::walk(const PointFace & from, GlobalPosition2D to, GlobalPosition2D centre, Consumer<WalkStepCurve> op) const
{
walkUntil(from, to, centre, [&op](const auto & fh) {
op(fh);
return false;
});
}
void
GeoData::walkUntil(const PointFace & from, GlobalPosition2D to, GlobalPosition2D centre, Tester<WalkStepCurve> op) const
{
WalkStepCurve step {WalkStep {.current = from.face(this)}};
if (!step.current.is_valid()) {
const auto entryEdge = findEntry(from.point, to);
if (!entryEdge.is_valid()) {
return;
}
step.current = opposite_face_handle(entryEdge);
}
ArcSegment arc {centre, from.point, to};
step.angle = arc.first;
while (step.current.is_valid() && !op(step)) {
step.previous = step.current;
for (const auto next : fh_range(step.current)) {
step.current = opposite_face_handle(next);
if (step.current.is_valid()) {
const auto e1 = point(to_vertex_handle(next));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(next)));
if (const auto intersect = arc.crossesLineAt(e1, e2)) {
step.exitHalfedge = next;
arc.ep0 = step.exitPosition = intersect.value().first;
arc.first = std::nextafter(step.angle = intersect.value().second, INFINITY);
break;
}
}
step.current.reset();
}
}
}
void
GeoData::boundaryWalk(Consumer<HalfedgeHandle> op) const
{
boundaryWalk(op, findBoundaryStart());
}
void
GeoData::boundaryWalk(Consumer<HalfedgeHandle> op, HalfedgeHandle start) const
{
assert(is_boundary(start));
boundaryWalkUntil(
[&op](auto heh) {
op(heh);
return false;
},
start);
}
void
GeoData::boundaryWalkUntil(Tester<HalfedgeHandle> op) const
{
boundaryWalkUntil(op, findBoundaryStart());
}
void
GeoData::boundaryWalkUntil(Tester<HalfedgeHandle> op, HalfedgeHandle start) const
{
assert(is_boundary(start));
if (!op(start)) {
for (auto heh = next_halfedge_handle(start); heh != start; heh = next_halfedge_handle(heh)) {
if (op(heh)) {
break;
}
}
}
}
GeoData::HalfedgeHandle
GeoData::findEntry(const GlobalPosition2D from, const GlobalPosition2D to) const
{
HalfedgeHandle entry;
boundaryWalkUntil([this, from, to, &entry](auto he) {
const auto e1 = point(to_vertex_handle(he));
const auto e2 = point(to_vertex_handle(opposite_halfedge_handle(he)));
if (linesCrossLtR(from, to, e1, e2)) {
entry = he;
return true;
}
return false;
});
return entry;
}
bool
GeoData::triangleContainsPoint(const GlobalPosition2D p, const Triangle<2> & t)
{
return pointLeftOfOrOnLine(p, t[0], t[1]) && pointLeftOfOrOnLine(p, t[1], t[2])
&& pointLeftOfOrOnLine(p, t[2], t[0]);
}
bool
GeoData::triangleContainsPoint(const GlobalPosition2D p, FaceHandle face) const
{
return triangleContainsPoint(p, triangle<2>(face));
}
GeoData::HalfedgeHandle
GeoData::findBoundaryStart() const
{
return *std::find_if(halfedges_sbegin(), halfedges_end(), [this](const auto heh) {
return is_boundary(heh);
});
}
[[nodiscard]] RelativePosition3D
GeoData::difference(const HalfedgeHandle heh) const
{
return ::difference(point(to_vertex_handle(heh)), point(from_vertex_handle(heh)));
}
template<glm::length_t D>
[[nodiscard]] RelativeDistance
GeoData::length(const HalfedgeHandle heh) const
{
return ::distance<D, GlobalDistance, glm::defaultp>(point(to_vertex_handle(heh)), point(from_vertex_handle(heh)));
}
[[nodiscard]] GlobalPosition3D
GeoData::centre(const HalfedgeHandle heh) const
{
return point(from_vertex_handle(heh)) + (difference(heh) / 2.F);
}
void
GeoData::updateAllVertexNormals()
{
updateAllVertexNormals(vertices());
}
template<std::ranges::range R>
void
GeoData::updateAllVertexNormals(const R & range)
{
std::ranges::for_each(range, [this](const auto vertex) {
updateVertexNormal(vertex);
});
}
void
GeoData::updateVertexNormal(VertexHandle vertex)
{
Normal3D n;
calc_vertex_normal_correct(vertex, n);
set_normal(vertex, glm::normalize(n));
}
bool
GeoData::triangleOverlapsTriangle(const Triangle<2> & a, const Triangle<2> & b)
{
return triangleContainsPoint(a.x, b) || triangleContainsPoint(a.y, b) || triangleContainsPoint(a.z, b)
|| triangleContainsPoint(b.x, a) || triangleContainsPoint(b.y, a) || triangleContainsPoint(b.z, a)
|| linesCross(a.x, a.y, b.x, b.y) || linesCross(a.x, a.y, b.y, b.z) || linesCross(a.x, a.y, b.z, b.x)
|| linesCross(a.y, a.z, b.x, b.y) || linesCross(a.y, a.z, b.y, b.z) || linesCross(a.y, a.z, b.z, b.x)
|| linesCross(a.z, a.x, b.x, b.y) || linesCross(a.z, a.x, b.y, b.z) || linesCross(a.z, a.x, b.z, b.x);
}
bool
GeoData::triangleContainsTriangle(const Triangle<2> & a, const Triangle<2> & b)
{
return triangleContainsPoint(a.x, b) && triangleContainsPoint(a.y, b) && triangleContainsPoint(a.z, b);
}
std::vector<GeoData::FaceHandle>
GeoData::setHeights(const std::span<const GlobalPosition3D> triangleStrip, const SetHeightsOpts & opts)
{
if (triangleStrip.size() < 3) {
return {};
}
const auto stripMinMax = std::ranges::minmax(triangleStrip, {}, &GlobalPosition3D::z);
lowerExtent.z = std::min(upperExtent.z, stripMinMax.min.z);
upperExtent.z = std::max(upperExtent.z, stripMinMax.max.z);
const auto vertexDistFrom = [this](GlobalPosition2D p) {
return [p, this](const VertexHandle v) {
return std::make_pair(v, ::distance(p, this->point(v).xy()));
};
};
const auto vertexDistFromE = [this](GlobalPosition2D p) {
return [p, this](const HalfedgeHandle e) {
const auto fromPoint = point(from_vertex_handle(e)).xy();
const auto toPoint = point(to_vertex_handle(e)).xy();
return std::make_pair(e, Triangle<2> {fromPoint, toPoint, p}.height());
};
};
std::set<VertexHandle> newOrChangedVerts;
auto addVertexForNormalUpdate = [this, &newOrChangedVerts](const VertexHandle vertex) {
newOrChangedVerts.emplace(vertex);
std::ranges::copy(vv_range(vertex), std::inserter(newOrChangedVerts, newOrChangedVerts.end()));
};
auto newVertexOnFace = [this, &vertexDistFrom, &opts, &vertexDistFromE](GlobalPosition3D tsPoint) {
const auto face = findPoint(tsPoint);
// Check vertices
if (const auto nearest = std::ranges::min(
std::views::iota(fv_begin(face), fv_end(face)) | std::views::transform(vertexDistFrom(tsPoint)), {},
&std::pair<VertexHandle, float>::second);
nearest.second < opts.nearNodeTolerance) {
point(nearest.first).z = tsPoint.z;
return nearest.first;
}
// Check edges
if (const auto nearest = std::ranges::min(
std::views::iota(fh_begin(face), fh_end(face)) | std::views::transform(vertexDistFromE(tsPoint)),
{}, &std::pair<HalfedgeHandle, float>::second);
nearest.second < opts.nearNodeTolerance) {
const auto from = point(from_vertex_handle(nearest.first)).xy();
const auto to = point(to_vertex_handle(nearest.first)).xy();
const auto v = vector_normal(from - to);
const auto inter = linesIntersectAt(from, to, tsPoint.xy(), tsPoint.xy() + v);
if (!inter) {
throw std::runtime_error("Perpendicular lines do not cross");
}
return split_copy(edge_handle(nearest.first), *inter || tsPoint.z);
}
// Nothing close, split face
return split_copy(face, tsPoint);
};
// New vertices for each vertex in triangleStrip
std::vector<VertexHandle> newVerts;
newVerts.reserve(triangleStrip.size());
std::transform(triangleStrip.begin(), triangleStrip.end(), std::back_inserter(newVerts), newVertexOnFace);
std::ranges::for_each(newVerts, addVertexForNormalUpdate);
// Create temporary triangles from triangleStrip
std::vector<Triangle<3>> strip;
std::transform(
strip_begin(triangleStrip), strip_end(triangleStrip), std::back_inserter(strip), [](const auto & newVert) {
const auto [a, b, c] = newVert;
return Triangle<3> {a, b, c};
});
auto getTriangle = [&strip](const auto point) -> const Triangle<3> * {
if (const auto t = std::ranges::find_if(strip,
[point](const auto & triangle) {
return triangleContainsPoint(point, triangle);
});
t != strip.end()) {
return &*t;
}
return nullptr;
};
// Cut along each edge of triangleStrip AB, AC, BC, BD, CD, CE etc
std::map<VertexHandle, const Triangle<3> *> boundaryTriangles;
auto doBoundaryPart = [this, &boundaryTriangles, &vertexDistFrom, &opts, &addVertexForNormalUpdate](
VertexHandle start, VertexHandle end, const Triangle<3> & triangle) {
boundaryTriangles.emplace(start, &triangle);
const auto endPoint = point(end);
while (!std::ranges::contains(vv_range(start), end)) {
const auto startPoint = point(start);
if (std::ranges::none_of(voh_range(start), [&](const auto & outHalf) {
const auto next = next_halfedge_handle(outHalf);
const auto nexts = std::array {from_vertex_handle(next), to_vertex_handle(next)};
const auto nextPoints = nexts | std::views::transform([this](const auto v) {
return std::make_pair(v, this->point(v));
});
if (linesCross(startPoint, endPoint, nextPoints.front().second, nextPoints.back().second)) {
if (const auto intersection = linesIntersectAt(startPoint.xy(), endPoint.xy(),
nextPoints.front().second.xy(), nextPoints.back().second.xy())) {
if (const auto nextDist
= std::ranges::min(nexts | std::views::transform(vertexDistFrom(*intersection)), {},
&std::pair<VertexHandle, float>::second);
nextDist.second < opts.nearNodeTolerance) {
point(nextDist.first).z = positionOnTriangle(point(nextDist.first), triangle).z;
start = nextDist.first;
return true;
}
else {
start = split_copy(edge_handle(next), positionOnTriangle(*intersection, triangle));
}
addVertexForNormalUpdate(start);
boundaryTriangles.emplace(start, &triangle);
return true;
}
throw std::runtime_error("Crossing lines don't intersect");
}
return false;
})) {
throw std::runtime_error(
std::format("Could not navigate to ({}, {}, {})", endPoint.x, endPoint.y, endPoint.z));
}
}
};
auto doBoundary = [&doBoundaryPart, triangle = strip.begin()](const auto & verts) mutable {
const auto & [a, _, c] = verts;
doBoundaryPart(a, c, *triangle);
triangle++;
};
std::ranges::for_each(newVerts | std::views::adjacent<3>, doBoundary);
doBoundaryPart(*++newVerts.begin(), newVerts.front(), strip.front());
doBoundaryPart(*++newVerts.rbegin(), newVerts.back(), strip.back());
std::set<HalfedgeHandle> done;
std::set<HalfedgeHandle> todo;
auto todoOutHalfEdges = [&todo, &done, this](const VertexHandle v) {
std::copy_if(voh_begin(v), voh_end(v), std::inserter(todo, todo.end()), [&done](const auto & h) {
return !done.contains(h);
});
};
std::ranges::for_each(newVerts, todoOutHalfEdges);
while (!todo.empty()) {
const auto heh = todo.extract(todo.begin()).value();
const auto fromVertex = from_vertex_handle(heh);
const auto toVertex = to_vertex_handle(heh);
const auto & fromPoint = point(fromVertex);
auto & toPoint = point(toVertex);
auto toTriangle = getTriangle(toPoint);
if (!toTriangle) {
if (const auto boundaryVertex = boundaryTriangles.find(toVertex);
boundaryVertex != boundaryTriangles.end()) {
toTriangle = boundaryVertex->second;
}
}
if (toTriangle) { // point within the new strip, adjust vertically by triangle
toPoint.z = positionOnTriangle(toPoint, *toTriangle).z;
addVertexForNormalUpdate(toVertex);
todoOutHalfEdges(toVertex);
}
else if (!toTriangle) { // point without the new strip, adjust vertically by limit
const auto maxOffset = static_cast<GlobalDistance>(opts.maxSlope * length<2>(heh));
const auto newHeight = std::clamp(toPoint.z, fromPoint.z - maxOffset, fromPoint.z + maxOffset);
if (newHeight != toPoint.z) {
toPoint.z = newHeight;
addVertexForNormalUpdate(toVertex);
std::copy_if(voh_begin(toVertex), voh_end(toVertex), std::inserter(todo, todo.end()),
[this, &boundaryTriangles](const auto & heh) {
return !boundaryTriangles.contains(to_vertex_handle(heh));
});
}
}
done.insert(heh);
}
std::vector<FaceHandle> out;
auto surfaceStripWalk
= [this, &getTriangle, &opts, &out](const auto & surfaceStripWalk, const auto & face) -> void {
if (!property(surface, face)) {
property(surface, face) = opts.surface;
out.emplace_back(face);
std::ranges::for_each(
ff_range(face), [this, &getTriangle, &surfaceStripWalk](const auto & adjacentFaceHandle) {
if (getTriangle(this->triangle<2>(adjacentFaceHandle).centroid())) {
surfaceStripWalk(surfaceStripWalk, adjacentFaceHandle);
}
});
}
};
for (const auto & triangle : strip) {
surfaceStripWalk(surfaceStripWalk, findPoint(triangle.centroid()));
}
updateAllVertexNormals(newOrChangedVerts);
generation++;
return out;
}
size_t
GeoData::getGeneration() const
{
return generation;
}
void
GeoData::sanityCheck() const
{
if (!std::ranges::all_of(faces(), [this](const auto face) {
return triangle<2>(face).isUp();
})) {
throw std::logic_error("Upside down faces detected");
}
}
|