#include "maths.h" #include #include #include #include #include #include glm::mat4 flat_orientation(const glm::vec3 & diff) { static const auto oneeighty {glm::rotate(pi, up)}; const auto flatdiff {glm::normalize(glm::vec3 {diff.x, 0, diff.z})}; auto e {glm::orientation(flatdiff, north)}; // Handle if diff is exactly opposite to north return (std::isnan(e[0][0])) ? oneeighty : e; } float vector_yaw(const glm::vec3 & diff) { return std::atan2(diff.x, diff.z); } float vector_pitch(const glm::vec3 & diff) { return std::atan(diff.y); } float round_frac(const float & v, const float & frac) { return std::round(v / frac) * frac; } float normalize(float ang) { while (ang > pi) { ang -= two_pi; } while (ang <= -pi) { ang += two_pi; } return ang; } Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : Arc([&]() -> Arc { const auto diffa = e0p - centre3; const auto diffb = e1p - centre3; const auto anga = vector_yaw(diffa); const auto angb = [&diffb, &anga]() { const auto angb = vector_yaw(diffb); return (angb < anga) ? angb + two_pi : angb; }(); return {anga, angb}; }()) { } std::pair find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) { if (as == bs) { return {as, false}; } for (const auto lr : {1.F, -1.F}) { // left or right turn (maybe possible with removal of positve check below) const auto perps = entrys + (half_pi * lr); const auto perpe = entrye - (half_pi * lr); const glm::vec2 ad {std::sin(perps), std::cos(perps)}; const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; const auto dx = bs.x - as.x; const auto dy = bs.y - as.y; const auto det = bd.x * ad.y - bd.y * ad.x; if (det != 0) { // near parallel line will yield noisy results const auto u = (dy * bd.x - dx * bd.y) / det; const auto v = (dy * ad.x - dx * ad.y) / det; if (u >= 0 && v >= 0) { return {as + ad * u, lr < 0}; } } } throw std::runtime_error("no intersection"); }