#include "maths.h" #include #include #include #include #include glm::mat4 flat_orientation(const glm::vec3 & diff) { static const auto oneeighty {glm::rotate(pi, up)}; const auto flatdiff {glm::normalize(glm::vec3 {diff.x, 0, diff.z})}; auto e {glm::orientation(flatdiff, north)}; // Handle if diff is exactly opposite to north return (std::isnan(e[0][0])) ? oneeighty : e; } float vector_yaw(const glm::vec3 & diff) { return std::atan2(diff.x, diff.z); } float vector_pitch(const glm::vec3 & diff) { return std::atan(diff.y); } float round_frac(const float & v, const float & frac) { return std::round(v / frac) * frac; } float normalize(float ang) { while (ang > pi) { ang -= two_pi; } while (ang <= -pi) { ang += two_pi; } return ang; } Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : Arc([&]() -> Arc { const auto diffa = e0p - centre3; const auto diffb = e1p - centre3; const auto anga = vector_yaw(diffa); const auto angb = [&diffb, &anga]() { const auto angb = vector_yaw(diffb); return (angb < anga) ? angb + two_pi : angb; }(); return {anga, angb}; }()) { } std::pair find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) { if (as == bs) { return {as, false}; } const auto perps = entrys + half_pi; const auto perpe = entrye - half_pi; const glm::vec2 ad {std::sin(perps), std::cos(perps)}; const glm::vec2 bd {std::sin(perpe), std::cos(perpe)}; return find_arc_centre(as, ad, bs, bd); } std::pair find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd) { const auto det = bd.x * ad.y - bd.y * ad.x; if (det != 0) { // near parallel line will yield noisy results const auto d = bs - as; const auto u = (d.y * bd.x - d.x * bd.y) / det; return {as + ad * u, u < 0}; } throw std::runtime_error("no intersection"); } float find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd) { // Short name functions for big forula auto sq = [](auto v) { return v * v; }; auto sqrt = [](float v) { return std::sqrt(v); }; // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 // According to symbolabs.com equation tool, that solves for r to give: // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y // W+W^(2)-4)) // These exist cos limitations of online formula rearrangement, and I'm OK with that. const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W - 2 * p * W) - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); }