#define BOOST_TEST_MODULE environment #include #include #include #include #include #include // Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm // Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy Direction2D getSunPos(const Direction2D position, const float timeOfYear2024) { auto & longitude = position.x; auto & latitude = position.y; using std::acos; using std::asin; using std::atan2; using std::cos; using std::floor; using std::sin; using std::tan; constexpr auto JD2451545 {946728000}; // which is noon 1 January 2000 Universal Time constexpr auto J11 {1704067200}; // 31st Dec 2023, so timeOfYear2024 1 is 1st Jan etc constexpr auto JDiff = static_cast(J11 - JD2451545); // Calculate difference in days between the current Julian Day // and JD 2451545.0, which is noon 1 January 2000 Universal Time // Calculate time of the day in UT decimal hours const auto dDecimalHours = 24.F * (timeOfYear2024 - floor(timeOfYear2024)); const auto dElapsedJulianDays = (JDiff + timeOfYear2024 * 86400.F) / 86400.F; // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the // ecliptic in radians but without limiting the angle to be less than 2*Pi // (i.e., the result may be greater than 2*Pi) const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays; const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays; const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly) + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega); const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega); // Calculate celestial coordinates ( right ascension and declination ) in radians // but without limiting the angle to be less than 2*Pi (i.e., the result may be // greater than 2*Pi) const auto dSin_EclipticLongitude = sin(dEclipticLongitude); const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude; const auto dX = cos(dEclipticLongitude); auto dRightAscension = atan2(dY, dX); if (dRightAscension < 0) { dRightAscension = dRightAscension + two_pi; } const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude); // Calculate local coordinates ( azimuth and zenith angle ) in degrees const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours; const auto dLocalMeanSiderealTime = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads; const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension; const auto dLatitudeInRadians = latitude; const auto dCos_Latitude = cos(dLatitudeInRadians); const auto dSin_Latitude = sin(dLatitudeInRadians); const auto dCos_HourAngle = cos(dHourAngle); Direction2D udtSunCoordinates; udtSunCoordinates.y = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude)); udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle); if (udtSunCoordinates.x < 0) { udtSunCoordinates.x = udtSunCoordinates.x + two_pi; } // Parallax Correction const auto dParallax = (earthMeanRadius / astronomicalUnit) * sin(udtSunCoordinates.y); udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax); return udtSunCoordinates; } using sunPosTestData = std::tuple; constexpr Direction2D Doncaster = {-1.1, 53.5}; constexpr Direction2D NewYork = {74.0, 40.7}; constexpr Direction2D Syndey = {-151.2, -33.9}; BOOST_DATA_TEST_CASE(sun_position, boost::unit_test::data::make({ {{0.F, 0.F}, 1.00F, {181.52F, -66.86F}}, {{0.F, 0.F}, 1.25F, {113.12F, -0.85F}}, {{0.F, 0.F}, 1.50F, {177.82F, 66.97F}}, {{0.F, 0.F}, 1.75F, {246.99F, 0.90F}}, {{0.F, 0.F}, 2.00F, {181.52F, -67.04F}}, {{0.F, 0.F}, 180.50F, {2.1F, 66.80F}}, {Doncaster, 180.50F, {176.34F, 59.64F}}, {NewYork, 180.50F, {278.04F, 27.34F}}, {Syndey, 180.50F, {106.13F, -63.29F}}, }), position, timeOfYear, expSunPos) { const auto sunPos = getSunPos(position * degreesToRads, timeOfYear) / degreesToRads; BOOST_CHECK_CLOSE(sunPos.x, expSunPos.x, 1.F); BOOST_CHECK_CLOSE(sunPos.y, expSunPos.y, 1.F); }