#include "maths.h" #include <cmath> #include <glm/glm.hpp> #include <glm/gtx/rotate_vector.hpp> #include <glm/gtx/transform.hpp> #include <stdexcept> glm::mat4 flat_orientation(const glm::vec3 & diff) { static const auto oneeighty {glm::rotate(pi, up)}; const auto flatdiff {glm::normalize(!!diff)}; auto e {glm::orientation(flatdiff, north)}; // Handle if diff is exactly opposite to north return (std::isnan(e[0][0])) ? oneeighty : e; } // Helper to lookup into a matrix given an xy vector coordinate template<typename M> inline auto & operator^(M & m, glm::ivec2 xy) { return m[xy.x][xy.y]; } // Create a matrix for the angle, given the targets into the matrix template<typename M> inline auto rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2, glm::ivec2 ms2) { M m(1); sincosf(a, m ^ s1, m ^ c1); m ^ c2 = m ^ c1; m ^ ms2 = -(m ^ s1); return m; } // Create a flat (2D) transformation matrix glm::mat2 rotate_flat(float a) { return rotation<glm::mat2>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0}); } // Create a yaw transformation matrix glm::mat4 rotate_yaw(float a) { return rotation<glm::mat4>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1}); } // Create a roll transformation matrix glm::mat4 rotate_roll(float a) { return rotation<glm::mat4>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2}); } // Create a pitch transformation matrix glm::mat4 rotate_pitch(float a) { return rotation<glm::mat4>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1}); } // Create a combined yaw, pitch, roll transformation matrix glm::mat4 rotate_ypr(glm::vec3 a) { return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z); } glm::mat4 rotate_yp(glm::vec2 a) { return rotate_yaw(a.y) * rotate_pitch(a.x); } float vector_yaw(const glm::vec3 & diff) { return std::atan2(diff.x, diff.y); } float vector_pitch(const glm::vec3 & diff) { return std::atan(diff.z); } float round_frac(const float & v, const float & frac) { return std::round(v / frac) * frac; } float normalize(float ang) { while (ang > pi) { ang -= two_pi; } while (ang <= -pi) { ang += two_pi; } return ang; } Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : Arc([&]() -> Arc { const auto diffa = e0p - centre3; const auto diffb = e1p - centre3; const auto anga = vector_yaw(diffa); const auto angb = [&diffb, &anga]() { const auto angb = vector_yaw(diffb); return (angb < anga) ? angb + two_pi : angb; }(); return {anga, angb}; }()) { } std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) { if (as == bs) { return {as, false}; } return find_arc_centre(as, sincosf(entrys + half_pi), bs, sincosf(entrye - half_pi)); } std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd) { const auto det = bd.x * ad.y - bd.y * ad.x; if (det != 0) { // near parallel line will yield noisy results const auto d = bs - as; const auto u = (d.y * bd.x - d.x * bd.y) / det; return {as + ad * u, u < 0}; } throw std::runtime_error("no intersection"); } std::pair<float, float> find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye) { const auto getrad = [&](float leftOrRight) { return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight)); }; return {getrad(-half_pi), getrad(half_pi)}; } float find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd) { // Short name functions for big forula auto sqrt = [](float v) { return std::sqrt(v); }; // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 // According to symbolabs.com equation tool, that solves for r to give: // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y // W+W^(2)-4)) // These exist cos limitations of online formula rearrangement, and I'm OK with that. const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W - 2 * p * W) - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); } float operator"" _mph(const long double v) { return static_cast<float>(mph_to_ms(v)); } float operator"" _kph(const long double v) { return static_cast<float>(kph_to_ms(v)); }