#include "water.h" #include "game/geoData.h" #include "gfx/models/texture.h" #include <algorithm> #include <cstddef> #include <gfx/gl/sceneShader.h> #include <gfx/gl/shadowMapper.h> #include <gfx/image.h> #include <gfx/models/mesh.h> #include <gfx/models/vertex.h> #include <glm/glm.hpp> #include <location.h> #include <maths.h> #include <set> #include <utility> #include <vector> namespace glm { bool operator<(const GlobalPosition2D a, const GlobalPosition2D b) { return std::tie(a.x, a.y) < std::tie(b.x, b.y); } } template<> VertexArrayObject & VertexArrayObject::addAttribsFor<Water::Vertex>(const GLuint arrayBuffer, const GLuint divisor) { return addAttribs<Water::Vertex, &Water::Vertex::pos>(arrayBuffer, divisor); } Water::Water(std::shared_ptr<GeoData> tm) : geoData {std::move(tm)}, water {std::make_shared<Texture>("water.png")} { generateMeshes(); } static constexpr GlobalDistance MIN_HEIGHT = 1'000; static constexpr GlobalDistance TILE_SIZE = 8'192; static constexpr GlobalDistance BORDER = TILE_SIZE / 2; void Water::generateMeshes() { // Map out where a water square needs to exist to cover all terrain faces with a low vertex std::set<GlobalPosition2D> waterPositions; std::for_each(geoData->vertices_sbegin(), geoData->vertices_end(), [this, &waterPositions](const auto vh) { if (geoData->point(vh).z < MIN_HEIGHT) { std::for_each(geoData->vf_begin(vh), geoData->vf_end(vh), [done = std::set<OpenMesh::FaceHandle>(), this, &waterPositions](const auto fh) mutable { if (done.insert(fh).second) { const auto getrange = [this, fh](glm::length_t axis) { const auto mme = std::minmax_element(geoData->fv_begin(fh), geoData->fv_end(fh), [this, axis](const auto vh1, const auto vh2) { return geoData->point(vh1)[axis] < geoData->point(vh2)[axis]; }); return std::make_pair((geoData->point(*mme.first)[axis] - BORDER) / TILE_SIZE, (geoData->point(*mme.second)[axis] + BORDER) / TILE_SIZE); }; const auto xrange = getrange(0); const auto yrange = getrange(1); for (auto x = xrange.first; x < xrange.second; x++) { for (auto y = yrange.first; y < yrange.second; y++) { waterPositions.emplace(x, y); } } } }); } }); std::vector<unsigned int> indices; std::vector<Vertex> vertices; std::map<GlobalPosition2D, size_t> vertexIndex; std::for_each(waterPositions.begin(), waterPositions.end(), [&indices, &vertices, &vertexIndex, extents = geoData->getExtents(), this](const GlobalPosition2D p) { std::array<unsigned int, 4> currentIndices {}; auto out = currentIndices.begin(); for (auto x : {0, TILE_SIZE}) { for (auto y : {0, TILE_SIZE}) { const auto pos = (p * TILE_SIZE) + GlobalPosition2D {x, y}; const auto v = vertexIndex.emplace(pos, vertices.size()); if (v.second) { const auto cpos = glm::clamp(pos, std::get<0>(extents).xy(), std::get<1>(extents).xy()); vertices.emplace_back(geoData->positionAt(cpos)); } *out++ = static_cast<unsigned int>(v.first->second); } } for (const auto i : {0U, 3U, 1U, 0U, 2U, 3U}) { indices.push_back(currentIndices[i]); } }); meshes.create<MeshT<Vertex>>(vertices, indices); } void Water::tick(TickDuration dur) { waveCycle += dur.count(); } void Water::render(const SceneShader & shader) const { shader.water.use(waveCycle); water->bind(); meshes.apply(&MeshT<GlobalPosition3D>::Draw); }