#include "network.h" #include "routeWalker.h" #include #include #include #include #include #include #include Network::Network(const std::string & tn) : texture {std::make_shared(tn, TextureOptions { .minFilter = GL_NEAREST_MIPMAP_LINEAR, })} { } Node::Ptr Network::nodeAt(GlobalPosition3D pos) { return newNodeAt(pos).first; } Network::NodeInsertion Network::newNodeAt(GlobalPosition3D pos) { if (auto [n, i] = candidateNodeAt(pos); i == NodeIs::NotInNetwork) { return {*nodes.insert(std::move(n)).first, i}; } else { return {std::move(n), NodeIs::InNetwork}; } } Node::Ptr Network::findNodeAt(GlobalPosition3D pos) const { if (const auto n = nodes.find(pos); n != nodes.end()) { return *n; } return {}; } Network::NodeInsertion Network::candidateNodeAt(GlobalPosition3D pos) const { if (const auto n = nodes.find(pos); n != nodes.end()) { return {*n, NodeIs::InNetwork}; } return {std::make_shared(pos), NodeIs::NotInNetwork}; } Node::Ptr Network::intersectRayNodes(const Ray & ray) const { // Click within 2m of a node if (const auto node = std::find_if(nodes.begin(), nodes.end(), [&ray](const Node::Ptr & node) { GlobalPosition3D ipos; Normal3D inorm; return ray.intersectSphere(node->pos, 2000, ipos, inorm); }); node != nodes.end()) { return *node; } return {}; } void Network::joinLinks(const Link::Ptr & l, const Link::Ptr & ol) { if (l != ol) { for (const auto oe : {0U, 1U}) { for (const auto te : {0U, 1U}) { if (l->ends[te].node == ol->ends[oe].node) { l->ends[te].nexts.emplace_back(ol, oe); ol->ends[oe].nexts.emplace_back(l, te); } } } } } Link::Nexts Network::routeFromTo(const Link::End & start, GlobalPosition3D dest) const { auto destNode {findNodeAt(dest)}; if (!destNode) { throw std::out_of_range("Node does not exist in network"); } return routeFromTo(start, destNode); } Link::Nexts Network::routeFromTo(const Link::End & end, const Node::Ptr & dest) const { return RouteWalker().findRouteTo(end, dest); } GenCurveDef Network::genCurveDef(const GlobalPosition3D & start, const GlobalPosition3D & end, float startDir) { const auto diff = difference(end, start); const auto vy {vector_yaw(diff)}; const auto dir = pi + startDir; const auto flatStart {start.xy()}, flatEnd {end.xy()}; const auto n2ed {(vy * 2) - dir - pi}; const auto centre {find_arc_centre(flatStart, dir, flatEnd, n2ed)}; if (centre.second) { // right hand arc return {end, start, centre.first}; } return {start, end, centre.first}; } std::pair Network::genCurveDef(const GlobalPosition3D & start, const GlobalPosition3D & end, float startDir, float endDir) { startDir += pi; endDir += pi; const auto flatStart {start.xy()}, flatEnd {end.xy()}; auto midheight = [&](auto mid) { const auto sm = glm::length(RelativePosition2D(flatStart - mid)), em = glm::length(RelativePosition2D(flatEnd - mid)); return start.z + GlobalDistance(RelativeDistance(end.z - start.z) * (sm / (sm + em))); }; if (const auto radii = find_arcs_radius(flatStart, startDir, flatEnd, endDir); radii.first < radii.second) { const auto radius {radii.first}; const auto c1 = flatStart + (sincos(startDir + half_pi) * radius); const auto c2 = flatEnd + (sincos(endDir + half_pi) * radius); const auto mid = (c1 + c2) / 2; const auto midh = mid || midheight(mid); return {{start, midh, c1}, {end, midh, c2}}; } else { const auto radius {radii.second}; const auto c1 = flatStart + (sincos(startDir - half_pi) * radius); const auto c2 = flatEnd + (sincos(endDir - half_pi) * radius); const auto mid = (c1 + c2) / 2; const auto midh = mid || midheight(mid); return {{midh, start, c1}, {midh, end, c2}}; } }