#include "environment.h" #include "gfx/lightDirection.h" #include <chronology.h> #include <gfx/gl/sceneRenderer.h> Environment::Environment() : worldTime {"2024-01-01T12:00:00"_time_t} { } void Environment::tick(TickDuration) { worldTime += 50; } void Environment::render(const SceneRenderer & renderer, const SceneProvider & scene) const { constexpr RGB baseAmbient {0.1F}, baseDirectional {0.0F}; constexpr RGB relativeAmbient {0.3F, 0.3F, 0.4F}, relativeDirectional {0.6F, 0.6F, 0.5F}; const LightDirection sunPos = getSunPos({}, worldTime); const auto ambient = baseAmbient + relativeAmbient * sunPos.ambient(); const auto directional = baseDirectional + relativeDirectional * sunPos.directional(); renderer.setAmbientLight(ambient); renderer.setDirectionalLight(directional, sunPos, scene); } // Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm // Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy Direction2D Environment::getSunPos(const Direction2D position, const time_t time) { auto & longitude = position.x; auto & latitude = position.y; using std::acos; using std::asin; using std::atan2; using std::cos; using std::floor; using std::sin; using std::tan; static const auto JD2451545 = "2000-01-01T12:00:00"_time_t; // Calculate difference in days between the current Julian Day // and JD 2451545.0, which is noon 1 January 2000 Universal Time // Calculate time of the day in UT decimal hours const auto dDecimalHours = static_cast<float>(time % 86400) / 3600.F; const auto dElapsedJulianDays = static_cast<float>(time - JD2451545) / 86400.F; // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the // ecliptic in radians but without limiting the angle to be less than 2*Pi // (i.e., the result may be greater than 2*Pi) const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays; const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays; const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly) + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega); const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega); // Calculate celestial coordinates ( right ascension and declination ) in radians // but without limiting the angle to be less than 2*Pi (i.e., the result may be // greater than 2*Pi) const auto dSin_EclipticLongitude = sin(dEclipticLongitude); const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude; const auto dX = cos(dEclipticLongitude); auto dRightAscension = atan2(dY, dX); if (dRightAscension < 0) { dRightAscension = dRightAscension + two_pi; } const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude); // Calculate local coordinates ( azimuth and zenith angle ) in degrees const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours; const auto dLocalMeanSiderealTime = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads; const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension; const auto dLatitudeInRadians = latitude; const auto dCos_Latitude = cos(dLatitudeInRadians); const auto dSin_Latitude = sin(dLatitudeInRadians); const auto dCos_HourAngle = cos(dHourAngle); Direction2D udtSunCoordinates; udtSunCoordinates.y = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude)); udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle); if (udtSunCoordinates.x < 0) { udtSunCoordinates.x = udtSunCoordinates.x + two_pi; } // Parallax Correction const auto dParallax = (earthMeanRadius / astronomicalUnit) * sin(udtSunCoordinates.y); udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax); return udtSunCoordinates; }