diff options
Diffstat (limited to 'test/test-environment.cpp')
-rw-r--r-- | test/test-environment.cpp | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/test/test-environment.cpp b/test/test-environment.cpp new file mode 100644 index 0000000..7b758d1 --- /dev/null +++ b/test/test-environment.cpp @@ -0,0 +1,105 @@ +#define BOOST_TEST_MODULE environment +#include <boost/test/data/test_case.hpp> +#include <boost/test/unit_test.hpp> +#include <cmath> +#include <stream_support.h> + +#include <config/types.h> +#include <maths.h> + +constexpr auto degreesToRads = pi / 180.F; +constexpr auto dEarthMeanRadius = 6371.01F; // In km +constexpr auto dAstronomicalUnit = 149597890.F; // In km + +// Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm +// Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy +Direction2D +getSunPos(const Direction2D position, const float timeOfYear2024) +{ + auto & longitude = position.x; + auto & latitude = position.y; + using std::acos; + using std::asin; + using std::atan2; + using std::cos; + using std::floor; + using std::sin; + using std::tan; + constexpr auto JD2451545 {946728000}; // which is noon 1 January 2000 Universal Time + constexpr auto J11 {1704067200}; // 31st Dec 2023, so timeOfYear2024 1 is 1st Jan etc + constexpr auto JDiff = static_cast<float>(J11 - JD2451545); + + // Calculate difference in days between the current Julian Day + // and JD 2451545.0, which is noon 1 January 2000 Universal Time + // Calculate time of the day in UT decimal hours + const auto dDecimalHours = 24.F * (timeOfYear2024 - floor(timeOfYear2024)); + const auto dElapsedJulianDays = (JDiff + timeOfYear2024 * 86400.F) / 86400.F; + + // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the + // ecliptic in radians but without limiting the angle to be less than 2*Pi + // (i.e., the result may be greater than 2*Pi) + const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays; + const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians + const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays; + const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly) + + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega); + const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega); + + // Calculate celestial coordinates ( right ascension and declination ) in radians + // but without limiting the angle to be less than 2*Pi (i.e., the result may be + // greater than 2*Pi) + const auto dSin_EclipticLongitude = sin(dEclipticLongitude); + const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude; + const auto dX = cos(dEclipticLongitude); + auto dRightAscension = atan2(dY, dX); + if (dRightAscension < 0) { + dRightAscension = dRightAscension + two_pi; + } + const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude); + + // Calculate local coordinates ( azimuth and zenith angle ) in degrees + const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours; + const auto dLocalMeanSiderealTime + = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads; + const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension; + const auto dLatitudeInRadians = latitude; + const auto dCos_Latitude = cos(dLatitudeInRadians); + const auto dSin_Latitude = sin(dLatitudeInRadians); + const auto dCos_HourAngle = cos(dHourAngle); + Direction2D udtSunCoordinates; + udtSunCoordinates.y + = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude)); + udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle); + if (udtSunCoordinates.x < 0) { + udtSunCoordinates.x = udtSunCoordinates.x + two_pi; + } + // Parallax Correction + const auto dParallax = (dEarthMeanRadius / dAstronomicalUnit) * sin(udtSunCoordinates.y); + udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax); + + return udtSunCoordinates; +} + +using sunPosTestData = std::tuple<Direction2D, float, Direction2D>; +constexpr Direction2D Doncaster = {-1.1, 53.5}; +constexpr Direction2D NewYork = {74.0, 40.7}; +constexpr Direction2D Syndey = {-151.2, -33.9}; + +BOOST_DATA_TEST_CASE(sun_position, + boost::unit_test::data::make<sunPosTestData>({ + {{0.F, 0.F}, 1.00F, {181.52F, -66.86F}}, + {{0.F, 0.F}, 1.25F, {113.12F, -0.85F}}, + {{0.F, 0.F}, 1.50F, {177.82F, 66.97F}}, + {{0.F, 0.F}, 1.75F, {246.99F, 0.90F}}, + {{0.F, 0.F}, 2.00F, {181.52F, -67.04F}}, + {{0.F, 0.F}, 180.50F, {2.1F, 66.80F}}, + {Doncaster, 180.50F, {176.34F, 59.64F}}, + {NewYork, 180.50F, {278.04F, 27.34F}}, + {Syndey, 180.50F, {106.13F, -63.29F}}, + }), + position, timeOfYear, expSunPos) +{ + const auto sunPos = getSunPos(position * degreesToRads, timeOfYear) / degreesToRads; + BOOST_CHECK_CLOSE(sunPos.x, expSunPos.x, 1.F); + BOOST_CHECK_CLOSE(sunPos.y, expSunPos.y, 1.F); +} |