diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/geometricPlane.cpp | 4 | ||||
-rw-r--r-- | lib/geometricPlane.h | 10 | ||||
-rw-r--r-- | lib/location.cpp | 4 | ||||
-rw-r--r-- | lib/location.h | 12 | ||||
-rw-r--r-- | lib/maths.cpp | 100 | ||||
-rw-r--r-- | lib/maths.h | 159 | ||||
-rw-r--r-- | lib/ray.cpp | 8 | ||||
-rw-r--r-- | lib/ray.h | 15 |
8 files changed, 153 insertions, 159 deletions
diff --git a/lib/geometricPlane.cpp b/lib/geometricPlane.cpp index ea4f02d..567f98a 100644 --- a/lib/geometricPlane.cpp +++ b/lib/geometricPlane.cpp @@ -4,10 +4,10 @@ #include <glm/gtx/intersect.hpp> GeometricPlane::PlaneRelation -GeometricPlane::getRelation(glm::vec3 p) const +GeometricPlane::getRelation(Position3D p) const { const auto d = glm::dot(normal, p - origin); - return d < 0.f ? PlaneRelation::Below : d > 0.f ? PlaneRelation::Above : PlaneRelation::On; + return d < 0.F ? PlaneRelation::Below : d > 0.F ? PlaneRelation::Above : PlaneRelation::On; } bool diff --git a/lib/geometricPlane.h b/lib/geometricPlane.h index dc8df50..c74beff 100644 --- a/lib/geometricPlane.h +++ b/lib/geometricPlane.h @@ -1,5 +1,6 @@ #pragma once +#include "config/types.h" #include <glm/vec3.hpp> #include <optional> @@ -9,14 +10,15 @@ class GeometricPlane { public: struct DistAndPosition { float dist; - glm::vec3 position; + Position3D position; }; enum class PlaneRelation { Above, Below, On }; - glm::vec3 origin, normal; + Position3D origin; + Normal3D normal; - PlaneRelation getRelation(glm::vec3 point) const; - std::optional<DistAndPosition> getRayIntersectPosition(const Ray &) const; + [[nodiscard]] PlaneRelation getRelation(Position3D point) const; + [[nodiscard]] std::optional<DistAndPosition> getRayIntersectPosition(const Ray &) const; static bool isIntersect(PlaneRelation a, PlaneRelation b); }; diff --git a/lib/location.cpp b/lib/location.cpp index 732dd6d..ff7cfa6 100644 --- a/lib/location.cpp +++ b/lib/location.cpp @@ -3,7 +3,7 @@ #include <glm/gtx/transform.hpp> glm::mat4 -Location::getTransform() const +Location::getRotationTransform() const { - return glm::translate(pos) * rotate_ypr(rot); + return rotate_ypr(rot); } diff --git a/lib/location.h b/lib/location.h index 078f5d3..8570fc2 100644 --- a/lib/location.h +++ b/lib/location.h @@ -1,14 +1,16 @@ #pragma once +#include "config/types.h" #include <glm/mat4x4.hpp> -#include <glm/vec3.hpp> class Location { public: - explicit Location(glm::vec3 pos = {}, glm::vec3 rot = {}) : pos {pos}, rot {rot} { } +#ifndef __cpp_aggregate_paren_init + explicit Location(GlobalPosition3D pos = {}, Rotation3D rot = {}) : pos {pos}, rot {rot} { } +#endif - glm::mat4 getTransform() const; + [[nodiscard]] glm::mat4 getRotationTransform() const; - glm::vec3 pos; - glm::vec3 rot; + GlobalPosition3D pos; + Rotation3D rot; }; diff --git a/lib/maths.cpp b/lib/maths.cpp index 7594b59..68662fc 100644 --- a/lib/maths.cpp +++ b/lib/maths.cpp @@ -3,30 +3,29 @@ #include <glm/glm.hpp> #include <glm/gtx/rotate_vector.hpp> #include <glm/gtx/transform.hpp> -#include <stdexcept> glm::mat4 -flat_orientation(const glm::vec3 & diff) +flat_orientation(const Direction3D & diff) { static const auto oneeighty {glm::rotate(pi, up)}; - const auto flatdiff {glm::normalize(!!diff)}; + const auto flatdiff {glm::normalize(diff.xy() || 0.F)}; auto e {glm::orientation(flatdiff, north)}; // Handle if diff is exactly opposite to north return (std::isnan(e[0][0])) ? oneeighty : e; } // Helper to lookup into a matrix given an xy vector coordinate -template<typename M> +template<typename M, typename I> inline auto & -operator^(M & m, glm::ivec2 xy) +operator^(M & m, glm::vec<2, I> xy) { return m[xy.x][xy.y]; } // Create a matrix for the angle, given the targets into the matrix -template<typename M> +template<typename M, typename I> inline auto -rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2, glm::ivec2 ms2) +rotation(typename M::value_type a, glm::vec<2, I> c1, glm::vec<2, I> s1, glm::vec<2, I> c2, glm::vec<2, I> ms2) { M m(1); sincosf(a, m ^ s1, m ^ c1); @@ -39,51 +38,51 @@ rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2, glm::mat2 rotate_flat(float a) { - return rotation<glm::mat2>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0}); + return rotation<glm::mat2, glm::length_t>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0}); } // Create a yaw transformation matrix glm::mat4 rotate_yaw(float a) { - return rotation<glm::mat4>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1}); + return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1}); } // Create a roll transformation matrix glm::mat4 rotate_roll(float a) { - return rotation<glm::mat4>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2}); + return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2}); } // Create a pitch transformation matrix glm::mat4 rotate_pitch(float a) { - return rotation<glm::mat4>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1}); + return rotation<glm::mat4, glm::length_t>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1}); } // Create a combined yaw, pitch, roll transformation matrix glm::mat4 -rotate_ypr(glm::vec3 a) +rotate_ypr(Rotation3D a) { return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z); } glm::mat4 -rotate_yp(glm::vec2 a) +rotate_yp(Rotation2D a) { return rotate_yaw(a.y) * rotate_pitch(a.x); } float -vector_yaw(const glm::vec3 & diff) +vector_yaw(const Direction3D & diff) { return std::atan2(diff.x, diff.y); } float -vector_pitch(const glm::vec3 & diff) +vector_pitch(const Direction3D & diff) { return std::atan(diff.z); } @@ -106,77 +105,6 @@ normalize(float ang) return ang; } -Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) : - Arc([&]() -> Arc { - const auto diffa = e0p - centre3; - const auto diffb = e1p - centre3; - const auto anga = vector_yaw(diffa); - const auto angb = [&diffb, &anga]() { - const auto angb = vector_yaw(diffb); - return (angb < anga) ? angb + two_pi : angb; - }(); - return {anga, angb}; - }()) -{ -} - -std::pair<glm::vec2, bool> -find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye) -{ - if (as == bs) { - return {as, false}; - } - return find_arc_centre(as, sincosf(entrys + half_pi), bs, sincosf(entrye - half_pi)); -} - -std::pair<glm::vec2, bool> -find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd) -{ - const auto det = bd.x * ad.y - bd.y * ad.x; - if (det != 0) { // near parallel line will yield noisy results - const auto d = bs - as; - const auto u = (d.y * bd.x - d.x * bd.y) / det; - return {as + ad * u, u < 0}; - } - throw std::runtime_error("no intersection"); -} - -std::pair<float, float> -find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye) -{ - const auto getrad = [&](float leftOrRight) { - return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight)); - }; - return {getrad(-half_pi), getrad(half_pi)}; -} - -float -find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd) -{ - // Short name functions for big forula - auto sqrt = [](float v) { - return std::sqrt(v); - }; - - // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r - // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 - // According to symbolabs.com equation tool, that solves for r to give: - // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 - // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y - // W+W^(2)-4)) - - // These exist cos limitations of online formula rearrangement, and I'm OK with that. - const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; - const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; - - return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W - - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W - - 2 * p * W) - - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) - * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) - / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); -} - float operator"" _mph(const long double v) { diff --git a/lib/maths.h b/lib/maths.h index b95b706..c1bf61a 100644 --- a/lib/maths.h +++ b/lib/maths.h @@ -1,36 +1,38 @@ #pragma once +#include "config/types.h" #include <cmath> #include <glm/glm.hpp> #include <glm/gtc/constants.hpp> #include <numeric> +#include <stdexcept> #include <utility> struct Arc : public std::pair<float, float> { using std::pair<float, float>::pair; - Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p); + template<typename T, glm::qualifier Q> + Arc(const glm::vec<3, T, Q> & centre3, const glm::vec<3, T, Q> & e0p, const glm::vec<3, T, Q> & e1p); - float - operator[](unsigned int i) const + auto + operator[](bool i) const { return i ? second : first; } }; -constexpr const glm::vec3 origin {0, 0, 0}; -constexpr const glm::vec3 up {0, 0, 1}; -constexpr const glm::vec3 down {0, 0, -1}; -constexpr const glm::vec3 north {0, 1, 0}; -constexpr const glm::vec3 south {0, -1, 0}; -constexpr const glm::vec3 east {1, 0, 0}; -constexpr const glm::vec3 west {-1, 0, 0}; +constexpr const RelativePosition3D up {0, 0, 1}; +constexpr const RelativePosition3D down {0, 0, -1}; +constexpr const RelativePosition3D north {0, 1, 0}; +constexpr const RelativePosition3D south {0, -1, 0}; +constexpr const RelativePosition3D east {1, 0, 0}; +constexpr const RelativePosition3D west {-1, 0, 0}; constexpr auto half_pi {glm::half_pi<float>()}; constexpr auto quarter_pi {half_pi / 2}; constexpr auto pi {glm::pi<float>()}; constexpr auto two_pi {glm::two_pi<float>()}; -glm::mat4 flat_orientation(const glm::vec3 & diff); +glm::mat4 flat_orientation(const Rotation3D & diff); // C++ wrapper for C's sincosf, but with references, not pointers inline auto @@ -39,10 +41,10 @@ sincosf(float a, float & s, float & c) return sincosf(a, &s, &c); } -inline glm::vec2 +inline Rotation2D sincosf(float a) { - glm::vec2 sc; + Rotation2D sc; sincosf(a, sc.x, sc.y); return sc; } @@ -51,11 +53,11 @@ glm::mat2 rotate_flat(float); glm::mat4 rotate_roll(float); glm::mat4 rotate_yaw(float); glm::mat4 rotate_pitch(float); -glm::mat4 rotate_yp(glm::vec2); -glm::mat4 rotate_ypr(glm::vec3); +glm::mat4 rotate_yp(Rotation2D); +glm::mat4 rotate_ypr(Rotation3D); -float vector_yaw(const glm::vec3 & diff); -float vector_pitch(const glm::vec3 & diff); +float vector_yaw(const Direction3D & diff); +float vector_pitch(const Direction3D & diff); float round_frac(const float & v, const float & frac); @@ -66,6 +68,17 @@ sq(T v) return v * v; } +template<std::integral T, glm::qualifier Q> +inline constexpr glm::vec<3, T, Q> +crossInt(const glm::vec<3, T, Q> a, const glm::vec<3, T, Q> b) +{ + return { + (a.y * b.z) - (a.z * b.y), + (a.z * b.x) - (a.x * b.z), + (a.x * b.y) - (a.y * b.x), + }; +} + template<typename R = float, typename Ta, typename Tb> inline constexpr auto ratio(Ta a, Tb b) @@ -87,30 +100,6 @@ perspective_divide(glm::vec<4, T, Q> v) return v / v.w; } -constexpr inline glm::vec2 -operator!(const glm::vec3 & v) -{ - return {v.x, v.y}; -} - -constexpr inline glm::vec3 -operator^(const glm::vec2 & v, float z) -{ - return {v.x, v.y, z}; -} - -constexpr inline glm::vec4 -operator^(const glm::vec3 & v, float w) -{ - return {v.x, v.y, v.z, w}; -} - -constexpr inline glm::vec3 -operator!(const glm::vec2 & v) -{ - return v ^ 0.F; -} - template<glm::length_t L1, glm::length_t L2, typename T, glm::qualifier Q> inline constexpr glm::vec<L1 + L2, T, Q> operator||(const glm::vec<L1, T, Q> v1, const glm::vec<L2, T, Q> v2) @@ -125,15 +114,17 @@ operator||(const glm::vec<L, T, Q> v1, const T v2) return {v1, v2}; } -inline glm::vec3 -operator%(const glm::vec3 & p, const glm::mat4 & mutation) +template<glm::length_t L, typename T, glm::qualifier Q> +inline constexpr glm::vec<L, T, Q> +operator%(const glm::vec<L, T, Q> & p, const glm::mat<L + 1, L + 1, T, Q> & mutation) { - const auto p2 = mutation * (p ^ 1); + const auto p2 = mutation * (p || T(1)); return p2 / p2.w; } -inline glm::vec3 -operator%=(glm::vec3 & p, const glm::mat4 & mutation) +template<glm::length_t L, typename T, glm::qualifier Q> +inline constexpr glm::vec<L, T, Q> +operator%=(glm::vec<L, T, Q> & p, const glm::mat<L + 1, L + 1, T, Q> & mutation) { return p = p % mutation; } @@ -146,10 +137,63 @@ arc_length(const Arc & arc) float normalize(float ang); -std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 start, float entrys, glm::vec2 end, float entrye); -std::pair<glm::vec2, bool> find_arc_centre(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd); -std::pair<float, float> find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye); -float find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd); +template<typename T, glm::qualifier Q> +std::pair<glm::vec<2, T, Q>, bool> +find_arc_centre(glm::vec<2, T, Q> start, Rotation2D startDir, glm::vec<2, T, Q> end, Rotation2D endDir) +{ + const auto det = endDir.x * startDir.y - endDir.y * startDir.x; + if (det != 0) { // near parallel line will yield noisy results + const auto d = end - start; + const auto u = (d.y * endDir.x - d.x * endDir.y) / det; + return {start + startDir * u, u < 0}; + } + throw std::runtime_error("no intersection"); +} + +template<typename T, glm::qualifier Q> +std::pair<glm::vec<2, T, Q>, bool> +find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye) +{ + if (start == end) { + return {start, false}; + } + return find_arc_centre(start, sincosf(entrys + half_pi), end, sincosf(entrye - half_pi)); +} + +template<typename T, glm::qualifier Q> +Angle +find_arcs_radius(glm::vec<2, T, Q> start, Rotation2D ad, glm::vec<2, T, Q> end, Rotation2D bd) +{ + using std::sqrt; + + // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r + // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 + // According to symbolabs.com equation tool, that solves for r to give: + // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 + // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y + // W+W^(2)-4)) + + // These exist cos limitations of online formula rearrangement, and I'm OK with that. + const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y}; + const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; + + return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W + - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W + - 2 * p * W) + - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) + * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p))))) + / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); +} + +template<typename T, glm::qualifier Q> +std::pair<Angle, Angle> +find_arcs_radius(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye) +{ + const auto getrad = [&](auto leftOrRight) { + return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight)); + }; + return {getrad(-half_pi), getrad(half_pi)}; +} template<typename T> auto @@ -158,6 +202,21 @@ midpoint(const std::pair<T, T> & v) return std::midpoint(v.first, v.second); } +template<typename T, glm::qualifier Q> +Arc::Arc(const glm::vec<3, T, Q> & centre3, const glm::vec<3, T, Q> & e0p, const glm::vec<3, T, Q> & e1p) : + Arc([&]() -> Arc { + const auto diffa = e0p - centre3; + const auto diffb = e1p - centre3; + const auto anga = vector_yaw(diffa); + const auto angb = [&diffb, &anga]() { + const auto angb = vector_yaw(diffb); + return (angb < anga) ? angb + two_pi : angb; + }(); + return {anga, angb}; + }()) +{ +} + // Conversions template<typename T> inline constexpr auto diff --git a/lib/ray.cpp b/lib/ray.cpp index c4e0d8c..9fb3648 100644 --- a/lib/ray.cpp +++ b/lib/ray.cpp @@ -2,13 +2,13 @@ #include <algorithm> Ray -Ray::fromPoints(glm::vec3 start, glm::vec3 p) +Ray::fromPoints(Position3D start, Position3D p) { return {start, glm::normalize(p - start)}; } float -Ray::distanceToLine(const glm::vec3 & p1, const glm::vec3 & e1) const +Ray::distanceToLine(const Position3D & p1, const Position3D & e1) const { // https://en.wikipedia.org/wiki/Skew_lines const auto diff = p1 - e1; @@ -25,10 +25,10 @@ Ray::distanceToLine(const glm::vec3 & p1, const glm::vec3 & e1) const } bool -Ray::passesCloseToEdges(const std::span<const glm::vec3> positions, float distance) const +Ray::passesCloseToEdges(const std::span<const Position3D> positions, float distance) const { return std::adjacent_find(positions.begin(), positions.end(), - [this, distance](const glm::vec3 & a, const glm::vec3 & b) { + [this, distance](const Position3D & a, const Position3D & b) { return distanceToLine(a, b) <= distance; }) != positions.end(); @@ -1,17 +1,20 @@ #pragma once +#include "config/types.h" #include <glm/glm.hpp> #include <span> class Ray { public: - Ray(glm::vec3 start, glm::vec3 direction) : start {start}, direction {direction} { } +#ifndef __cpp_aggregate_paren_init + Ray(Position3D start, Direction3D direction) : start {start}, direction {direction} { } +#endif - static Ray fromPoints(glm::vec3, glm::vec3); + static Ray fromPoints(Position3D, Position3D); - glm::vec3 start; - glm::vec3 direction; + Position3D start; + Direction3D direction; - float distanceToLine(const glm::vec3 & a, const glm::vec3 & b) const; - bool passesCloseToEdges(const std::span<const glm::vec3> positions, float distance) const; + [[nodiscard]] float distanceToLine(const Position3D & a, const Position3D & b) const; + [[nodiscard]] bool passesCloseToEdges(const std::span<const Position3D> positions, float distance) const; }; |