diff options
Diffstat (limited to 'lib/maths.h')
-rw-r--r-- | lib/maths.h | 64 |
1 files changed, 14 insertions, 50 deletions
diff --git a/lib/maths.h b/lib/maths.h index 3ef12e7..09af048 100644 --- a/lib/maths.h +++ b/lib/maths.h @@ -427,70 +427,34 @@ linesIntersectAt(const glm::vec<2, T, Q> Aabs, const glm::vec<2, T, Q> Babs, con template<std::floating_point T> constexpr auto EPSILON = 0.0001F; template<std::floating_point T> -auto +[[nodiscard]] constexpr auto isWithinLimit(T lhs, T rhs, T limit = EPSILON<T>) { return std::abs(lhs - rhs) <= limit; } -template<Arithmetic T, glm::qualifier Q = glm::defaultp> -std::pair<glm::vec<2, T, Q>, bool> -find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye) -{ - if (start == end) { - return {start, false}; - } - return find_arc_centre(start, sincos(entrys + half_pi), end, sincos(entrye - half_pi)); -} - -template<Arithmetic T, glm::qualifier Q = glm::defaultp> -std::pair<glm::vec<2, T, Q>, bool> -find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end) +template<Arithmetic T, std::floating_point D, glm::qualifier Q = glm::defaultp> +constexpr std::pair<glm::vec<2, T, Q>, D> +find_arc_centre(glm::vec<2, T, Q> start, glm::vec<2, D, Q> entrys, glm::vec<2, T, Q> end) { if (start == end) { - return {start, false}; + return {start, 0}; } - const auto startNormal = vector_normal(sincos(entrys) * 10'000.F); const auto diffEnds = difference(end, start); + const auto offset = entrys.x * diffEnds.y - entrys.y * diffEnds.x; + if (offset == 0.F) { + return {start, offset}; + } const auto midEnds = start + ((end - start) / 2); - const auto diffNormal = vector_normal(diffEnds); - const auto centre = linesIntersectAt(start, start + startNormal, midEnds, midEnds + diffNormal); - return {*centre, normalize(vector_yaw(diffEnds) - entrys) < 0}; -} - -template<Arithmetic T, glm::qualifier Q = glm::defaultp> -Angle -find_arcs_radius(glm::vec<2, T, Q> start, Rotation2D ad, glm::vec<2, T, Q> end, Rotation2D bd) -{ - using std::sqrt; - - // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r - // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2 - // According to symbolabs.com equation tool, that solves for r to give: - // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4 - // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y - // W+W^(2)-4)) - // Locally simplified to work relative, removing one half of the problem and operating on relative positions. - - // These exist cos limitations of online formula rearrangement, and I'm OK with that. - const RelativePosition2D diff {end - start}; - const auto &o {diff.x}, &p {diff.y}; - const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y}; - - return (-2 * X * o + 2 * o * Z - 2 * Y * p + 2 * p * W - - sqrt(sq(2 * X * o - 2 * o * Z + 2 * Y * p - 2 * p * W) - - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) * (sq(o) + sq(p))))) - / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)); + const auto centre = linesIntersectAtDirs(start, vector_normal(entrys), midEnds, vector_normal(diffEnds)); + return {*centre, offset}; } template<Arithmetic T, glm::qualifier Q = glm::defaultp> -std::pair<Angle, Angle> -find_arcs_radius(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye) +constexpr std::pair<glm::vec<2, T, Q>, float> +find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end) { - const auto getrad = [&](auto leftOrRight) { - return find_arcs_radius(start, sincos(entrys + leftOrRight), end, sincos(entrye + leftOrRight)); - }; - return {getrad(-half_pi), getrad(half_pi)}; + return find_arc_centre(start, sincos(entrys), end); } template<Arithmetic T> |