summaryrefslogtreecommitdiff
path: root/lib/maths.h
diff options
context:
space:
mode:
Diffstat (limited to 'lib/maths.h')
-rw-r--r--lib/maths.h64
1 files changed, 14 insertions, 50 deletions
diff --git a/lib/maths.h b/lib/maths.h
index 3ef12e7..09af048 100644
--- a/lib/maths.h
+++ b/lib/maths.h
@@ -427,70 +427,34 @@ linesIntersectAt(const glm::vec<2, T, Q> Aabs, const glm::vec<2, T, Q> Babs, con
template<std::floating_point T> constexpr auto EPSILON = 0.0001F;
template<std::floating_point T>
-auto
+[[nodiscard]] constexpr auto
isWithinLimit(T lhs, T rhs, T limit = EPSILON<T>)
{
return std::abs(lhs - rhs) <= limit;
}
-template<Arithmetic T, glm::qualifier Q = glm::defaultp>
-std::pair<glm::vec<2, T, Q>, bool>
-find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye)
-{
- if (start == end) {
- return {start, false};
- }
- return find_arc_centre(start, sincos(entrys + half_pi), end, sincos(entrye - half_pi));
-}
-
-template<Arithmetic T, glm::qualifier Q = glm::defaultp>
-std::pair<glm::vec<2, T, Q>, bool>
-find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end)
+template<Arithmetic T, std::floating_point D, glm::qualifier Q = glm::defaultp>
+constexpr std::pair<glm::vec<2, T, Q>, D>
+find_arc_centre(glm::vec<2, T, Q> start, glm::vec<2, D, Q> entrys, glm::vec<2, T, Q> end)
{
if (start == end) {
- return {start, false};
+ return {start, 0};
}
- const auto startNormal = vector_normal(sincos(entrys) * 10'000.F);
const auto diffEnds = difference(end, start);
+ const auto offset = entrys.x * diffEnds.y - entrys.y * diffEnds.x;
+ if (offset == 0.F) {
+ return {start, offset};
+ }
const auto midEnds = start + ((end - start) / 2);
- const auto diffNormal = vector_normal(diffEnds);
- const auto centre = linesIntersectAt(start, start + startNormal, midEnds, midEnds + diffNormal);
- return {*centre, normalize(vector_yaw(diffEnds) - entrys) < 0};
-}
-
-template<Arithmetic T, glm::qualifier Q = glm::defaultp>
-Angle
-find_arcs_radius(glm::vec<2, T, Q> start, Rotation2D ad, glm::vec<2, T, Q> end, Rotation2D bd)
-{
- using std::sqrt;
-
- // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r
- // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2
- // According to symbolabs.com equation tool, that solves for r to give:
- // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4
- // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y
- // W+W^(2)-4))
- // Locally simplified to work relative, removing one half of the problem and operating on relative positions.
-
- // These exist cos limitations of online formula rearrangement, and I'm OK with that.
- const RelativePosition2D diff {end - start};
- const auto &o {diff.x}, &p {diff.y};
- const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y};
-
- return (-2 * X * o + 2 * o * Z - 2 * Y * p + 2 * p * W
- - sqrt(sq(2 * X * o - 2 * o * Z + 2 * Y * p - 2 * p * W)
- - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4) * (sq(o) + sq(p)))))
- / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4));
+ const auto centre = linesIntersectAtDirs(start, vector_normal(entrys), midEnds, vector_normal(diffEnds));
+ return {*centre, offset};
}
template<Arithmetic T, glm::qualifier Q = glm::defaultp>
-std::pair<Angle, Angle>
-find_arcs_radius(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end, Angle entrye)
+constexpr std::pair<glm::vec<2, T, Q>, float>
+find_arc_centre(glm::vec<2, T, Q> start, Angle entrys, glm::vec<2, T, Q> end)
{
- const auto getrad = [&](auto leftOrRight) {
- return find_arcs_radius(start, sincos(entrys + leftOrRight), end, sincos(entrye + leftOrRight));
- };
- return {getrad(-half_pi), getrad(half_pi)};
+ return find_arc_centre(start, sincos(entrys), end);
}
template<Arithmetic T>