summaryrefslogtreecommitdiff
path: root/lib/maths.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/maths.cpp')
-rw-r--r--lib/maths.cpp100
1 files changed, 14 insertions, 86 deletions
diff --git a/lib/maths.cpp b/lib/maths.cpp
index 7594b59..68662fc 100644
--- a/lib/maths.cpp
+++ b/lib/maths.cpp
@@ -3,30 +3,29 @@
#include <glm/glm.hpp>
#include <glm/gtx/rotate_vector.hpp>
#include <glm/gtx/transform.hpp>
-#include <stdexcept>
glm::mat4
-flat_orientation(const glm::vec3 & diff)
+flat_orientation(const Direction3D & diff)
{
static const auto oneeighty {glm::rotate(pi, up)};
- const auto flatdiff {glm::normalize(!!diff)};
+ const auto flatdiff {glm::normalize(diff.xy() || 0.F)};
auto e {glm::orientation(flatdiff, north)};
// Handle if diff is exactly opposite to north
return (std::isnan(e[0][0])) ? oneeighty : e;
}
// Helper to lookup into a matrix given an xy vector coordinate
-template<typename M>
+template<typename M, typename I>
inline auto &
-operator^(M & m, glm::ivec2 xy)
+operator^(M & m, glm::vec<2, I> xy)
{
return m[xy.x][xy.y];
}
// Create a matrix for the angle, given the targets into the matrix
-template<typename M>
+template<typename M, typename I>
inline auto
-rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2, glm::ivec2 ms2)
+rotation(typename M::value_type a, glm::vec<2, I> c1, glm::vec<2, I> s1, glm::vec<2, I> c2, glm::vec<2, I> ms2)
{
M m(1);
sincosf(a, m ^ s1, m ^ c1);
@@ -39,51 +38,51 @@ rotation(typename M::value_type a, glm::ivec2 c1, glm::ivec2 s1, glm::ivec2 c2,
glm::mat2
rotate_flat(float a)
{
- return rotation<glm::mat2>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
+ return rotation<glm::mat2, glm::length_t>(a, {0, 0}, {0, 1}, {1, 1}, {1, 0});
}
// Create a yaw transformation matrix
glm::mat4
rotate_yaw(float a)
{
- return rotation<glm::mat4>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
+ return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {1, 0}, {1, 1}, {0, 1});
}
// Create a roll transformation matrix
glm::mat4
rotate_roll(float a)
{
- return rotation<glm::mat4>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
+ return rotation<glm::mat4, glm::length_t>(a, {0, 0}, {2, 0}, {2, 2}, {0, 2});
}
// Create a pitch transformation matrix
glm::mat4
rotate_pitch(float a)
{
- return rotation<glm::mat4>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
+ return rotation<glm::mat4, glm::length_t>(a, {1, 1}, {1, 2}, {2, 2}, {2, 1});
}
// Create a combined yaw, pitch, roll transformation matrix
glm::mat4
-rotate_ypr(glm::vec3 a)
+rotate_ypr(Rotation3D a)
{
return rotate_yaw(a.y) * rotate_pitch(a.x) * rotate_roll(a.z);
}
glm::mat4
-rotate_yp(glm::vec2 a)
+rotate_yp(Rotation2D a)
{
return rotate_yaw(a.y) * rotate_pitch(a.x);
}
float
-vector_yaw(const glm::vec3 & diff)
+vector_yaw(const Direction3D & diff)
{
return std::atan2(diff.x, diff.y);
}
float
-vector_pitch(const glm::vec3 & diff)
+vector_pitch(const Direction3D & diff)
{
return std::atan(diff.z);
}
@@ -106,77 +105,6 @@ normalize(float ang)
return ang;
}
-Arc::Arc(const glm::vec3 & centre3, const glm::vec3 & e0p, const glm::vec3 & e1p) :
- Arc([&]() -> Arc {
- const auto diffa = e0p - centre3;
- const auto diffb = e1p - centre3;
- const auto anga = vector_yaw(diffa);
- const auto angb = [&diffb, &anga]() {
- const auto angb = vector_yaw(diffb);
- return (angb < anga) ? angb + two_pi : angb;
- }();
- return {anga, angb};
- }())
-{
-}
-
-std::pair<glm::vec2, bool>
-find_arc_centre(glm::vec2 as, float entrys, glm::vec2 bs, float entrye)
-{
- if (as == bs) {
- return {as, false};
- }
- return find_arc_centre(as, sincosf(entrys + half_pi), bs, sincosf(entrye - half_pi));
-}
-
-std::pair<glm::vec2, bool>
-find_arc_centre(glm::vec2 as, glm::vec2 ad, glm::vec2 bs, glm::vec2 bd)
-{
- const auto det = bd.x * ad.y - bd.y * ad.x;
- if (det != 0) { // near parallel line will yield noisy results
- const auto d = bs - as;
- const auto u = (d.y * bd.x - d.x * bd.y) / det;
- return {as + ad * u, u < 0};
- }
- throw std::runtime_error("no intersection");
-}
-
-std::pair<float, float>
-find_arcs_radius(glm::vec2 start, float entrys, glm::vec2 end, float entrye)
-{
- const auto getrad = [&](float leftOrRight) {
- return find_arcs_radius(start, sincosf(entrys + leftOrRight), end, sincosf(entrye + leftOrRight));
- };
- return {getrad(-half_pi), getrad(half_pi)};
-}
-
-float
-find_arcs_radius(glm::vec2 start, glm::vec2 ad, glm::vec2 end, glm::vec2 bd)
-{
- // Short name functions for big forula
- auto sqrt = [](float v) {
- return std::sqrt(v);
- };
-
- // Calculates path across both arcs along the normals... pythagorean theorem... for some known radius r
- // (2r)^2 = ((m + (X*r)) - (o + (Z*r)))^2 + ((n + (Y*r)) - (p + (W*r)))^2
- // According to symbolabs.com equation tool, that solves for r to give:
- // r=(-2 m X+2 X o+2 m Z-2 o Z-2 n Y+2 Y p+2 n W-2 p W-sqrt((2 m X-2 X o-2 m Z+2 o Z+2 n Y-2 Y p-2 n W+2 p W)^(2)-4
- // (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y W+W^(2)-4) (m^(2)-2 m o+o^(2)+n^(2)-2 n p+p^(2))))/(2 (X^(2)-2 X Z+Z^(2)+Y^(2)-2 Y
- // W+W^(2)-4))
-
- // These exist cos limitations of online formula rearrangement, and I'm OK with that.
- const auto &m {start.x}, &n {start.y}, &o {end.x}, &p {end.y};
- const auto &X {ad.x}, &Y {ad.y}, &Z {bd.x}, &W {bd.y};
-
- return (2 * m * X - 2 * X * o - 2 * m * Z + 2 * o * Z + 2 * n * Y - 2 * Y * p - 2 * n * W + 2 * p * W
- - sqrt(sq(-2 * m * X + 2 * X * o + 2 * m * Z - 2 * o * Z - 2 * n * Y + 2 * Y * p + 2 * n * W
- - 2 * p * W)
- - (4 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4)
- * (sq(m) - 2 * m * o + sq(o) + sq(n) - 2 * n * p + sq(p)))))
- / (2 * (sq(X) - 2 * X * Z + sq(Z) + sq(Y) - 2 * Y * W + sq(W) - 4));
-}
-
float
operator"" _mph(const long double v)
{