diff options
author | Dan Goodliffe <dan@randomdan.homeip.net> | 2024-09-20 20:27:51 +0100 |
---|---|---|
committer | Dan Goodliffe <dan@randomdan.homeip.net> | 2024-09-20 20:27:51 +0100 |
commit | 9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f (patch) | |
tree | 80eb3be43b8552282ab8cc2ab7756ee0a164c456 /game/environment.cpp | |
parent | Add basic environment object (diff) | |
download | ilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.tar.bz2 ilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.tar.xz ilt-9b3eff2ee85ca6627342cfbbe1ac3ba988dc377f.zip |
Move getSunPos to Environment
Diffstat (limited to 'game/environment.cpp')
-rw-r--r-- | game/environment.cpp | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/game/environment.cpp b/game/environment.cpp index fd2bfd4..665c11b 100644 --- a/game/environment.cpp +++ b/game/environment.cpp @@ -16,3 +16,70 @@ Environment::render(const SceneRenderer & renderer, const SceneProvider & scene) renderer.setAmbientLight({0.5F, 0.5F, 0.5F}); renderer.setDirectionalLight({0.6F, 0.6F, 0.6F}, {-1, 1, -1}, scene); } + +// Based on the C++ code published at https://www.psa.es/sdg/sunpos.htm +// Linked from https://www.pveducation.org/pvcdrom/properties-of-sunlight/suns-position-to-high-accuracy +Direction2D +Environment::getSunPos(const Direction2D position, const time_t time) +{ + auto & longitude = position.x; + auto & latitude = position.y; + using std::acos; + using std::asin; + using std::atan2; + using std::cos; + using std::floor; + using std::sin; + using std::tan; + static const auto JD2451545 = "2000-01-01T12:00:00"_time_t; + + // Calculate difference in days between the current Julian Day + // and JD 2451545.0, which is noon 1 January 2000 Universal Time + // Calculate time of the day in UT decimal hours + const auto dDecimalHours = static_cast<float>(time % 86400) / 3600.F; + const auto dElapsedJulianDays = static_cast<float>(time - JD2451545) / 86400.F; + + // Calculate ecliptic coordinates (ecliptic longitude and obliquity of the + // ecliptic in radians but without limiting the angle to be less than 2*Pi + // (i.e., the result may be greater than 2*Pi) + const auto dOmega = 2.1429F - 0.0010394594F * dElapsedJulianDays; + const auto dMeanLongitude = 4.8950630F + 0.017202791698F * dElapsedJulianDays; // Radians + const auto dMeanAnomaly = 6.2400600F + 0.0172019699F * dElapsedJulianDays; + const auto dEclipticLongitude = dMeanLongitude + 0.03341607F * sin(dMeanAnomaly) + + 0.00034894F * sin(2 * dMeanAnomaly) - 0.0001134F - 0.0000203F * sin(dOmega); + const auto dEclipticObliquity = 0.4090928F - 6.2140e-9F * dElapsedJulianDays + 0.0000396F * cos(dOmega); + + // Calculate celestial coordinates ( right ascension and declination ) in radians + // but without limiting the angle to be less than 2*Pi (i.e., the result may be + // greater than 2*Pi) + const auto dSin_EclipticLongitude = sin(dEclipticLongitude); + const auto dY = cos(dEclipticObliquity) * dSin_EclipticLongitude; + const auto dX = cos(dEclipticLongitude); + auto dRightAscension = atan2(dY, dX); + if (dRightAscension < 0) { + dRightAscension = dRightAscension + two_pi; + } + const auto dDeclination = asin(sin(dEclipticObliquity) * dSin_EclipticLongitude); + + // Calculate local coordinates ( azimuth and zenith angle ) in degrees + const auto dGreenwichMeanSiderealTime = 6.6974243242F + 0.0657098283F * dElapsedJulianDays + dDecimalHours; + const auto dLocalMeanSiderealTime + = (dGreenwichMeanSiderealTime * 15.0F + (longitude / degreesToRads)) * degreesToRads; + const auto dHourAngle = dLocalMeanSiderealTime - dRightAscension; + const auto dLatitudeInRadians = latitude; + const auto dCos_Latitude = cos(dLatitudeInRadians); + const auto dSin_Latitude = sin(dLatitudeInRadians); + const auto dCos_HourAngle = cos(dHourAngle); + Direction2D udtSunCoordinates; + udtSunCoordinates.y + = (acos(dCos_Latitude * dCos_HourAngle * cos(dDeclination) + sin(dDeclination) * dSin_Latitude)); + udtSunCoordinates.x = atan2(-sin(dHourAngle), tan(dDeclination) * dCos_Latitude - dSin_Latitude * dCos_HourAngle); + if (udtSunCoordinates.x < 0) { + udtSunCoordinates.x = udtSunCoordinates.x + two_pi; + } + // Parallax Correction + const auto dParallax = (earthMeanRadius / astronomicalUnit) * sin(udtSunCoordinates.y); + udtSunCoordinates.y = half_pi - (udtSunCoordinates.y + dParallax); + + return udtSunCoordinates; +} |