// ********************************************************************** // // Copyright (c) 2003 // ZeroC, Inc. // Billerica, MA, USA // // All Rights Reserved. // // Ice is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License version 2 as published by // the Free Software Foundation. // // ********************************************************************** #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace Ice; using namespace IceInternal; void IceInternal::incRef(ThreadPool* p) { p->__incRef(); } void IceInternal::decRef(ThreadPool* p) { p->__decRef(); } IceInternal::ThreadPool::ThreadPool(const InstancePtr& instance, const string& prefix, int timeout) : _instance(instance), _destroyed(false), _prefix(prefix), _lastFd(INVALID_SOCKET), _timeout(timeout), _size(0), _sizeMax(0), _sizeWarn(0), _messageSizeMax(0), _running(0), _inUse(0), _load(0), _warnUdp(_instance->properties()->getPropertyAsInt("Ice.Warn.Datagrams") > 0) { SOCKET fds[2]; createPipe(fds); _fdIntrRead = fds[0]; _fdIntrWrite = fds[1]; setBlock(_fdIntrRead, false); FD_ZERO(&_fdSet); FD_SET(_fdIntrRead, &_fdSet); _maxFd = _fdIntrRead; _minFd = _fdIntrRead; int size = _instance->properties()->getPropertyAsIntWithDefault(_prefix + ".Size", 5); if(size < 1) { size = 1; } const_cast(_size) = size; int sizeMax = _instance->properties()->getPropertyAsIntWithDefault(_prefix + ".SizeMax", _size * 10); if(sizeMax < _size) { sizeMax = _size; } const_cast(_sizeMax) = sizeMax; int sizeWarn = _instance->properties()->getPropertyAsIntWithDefault(_prefix + ".SizeWarn", _sizeMax * 80 / 100); const_cast(_sizeWarn) = sizeWarn; const_cast(_messageSizeMax) = instance->messageSizeMax(); __setNoDelete(true); try { for(int i = 0 ; i < _size ; ++i) { IceUtil::ThreadPtr thread = new EventHandlerThread(this); _threads.push_back(thread->start()); ++_running; } } catch(const IceUtil::Exception& ex) { { Error out(_instance->logger()); out << "cannot create thread for `" << _prefix << "':\n" << ex; } destroy(); joinWithAllThreads(); __setNoDelete(false); throw; } catch(...) { __setNoDelete(false); throw; } __setNoDelete(false); } IceInternal::ThreadPool::~ThreadPool() { assert(_destroyed); closeSocket(_fdIntrWrite); closeSocket(_fdIntrRead); } void IceInternal::ThreadPool::destroy() { IceUtil::Mutex::Lock sync(*this); assert(!_destroyed); assert(_handlerMap.empty()); assert(_changes.empty()); _destroyed = true; setInterrupt(0); } void IceInternal::ThreadPool::_register(SOCKET fd, const EventHandlerPtr& handler) { IceUtil::Mutex::Lock sync(*this); assert(!_destroyed); _changes.push_back(make_pair(fd, handler)); setInterrupt(0); } void IceInternal::ThreadPool::unregister(SOCKET fd) { IceUtil::Mutex::Lock sync(*this); assert(!_destroyed); _changes.push_back(make_pair(fd, EventHandlerPtr(0))); setInterrupt(0); } void IceInternal::ThreadPool::promoteFollower() { if(_sizeMax > 1) { _promoteMutex.unlock(); { IceUtil::Mutex::Lock sync(*this); if(!_destroyed) { assert(_inUse >= 0); ++_inUse; if(_inUse == _sizeWarn) { Warning out(_instance->logger()); out << "thread pool `" << _prefix << "' is running low on threads\n" << "Size=" << _size << ", " << "SizeMax=" << _sizeMax << ", " << "SizeWarn=" << _sizeWarn; } assert(_inUse <= _running); if(_inUse < _sizeMax && _inUse == _running) { try { IceUtil::ThreadPtr thread = new EventHandlerThread(this); _threads.push_back(thread->start()); ++_running; } catch(const IceUtil::Exception& ex) { Error out(_instance->logger()); out << "cannot create thread for `" << _prefix << "':\n" << ex; } } } } } } void IceInternal::ThreadPool::initiateShutdown() { // // This operation must be signal safe, so all we can do is to set // an interrupt. // setInterrupt(1); } void IceInternal::ThreadPool::joinWithAllThreads() { // // _threads is immutable after destroy() has been called, // therefore no synchronization is needed. (Synchronization // wouldn't be possible here anyway, because otherwise the other // threads would never terminate.) // assert(_destroyed); #if defined(_MSC_VER) && _MSC_VER <= 1200 // The mem_fun_ref below does not work with VC++ 6.0 for(vector::iterator p = _threads.begin(); p != _threads.end(); ++p) { p->join(); } #else for_each(_threads.begin(), _threads.end(), mem_fun_ref(&IceUtil::ThreadControl::join)); #endif } bool IceInternal::ThreadPool::clearInterrupt() { char c; repeat: #ifdef _WIN32 if(::recv(_fdIntrRead, &c, 1, 0) == SOCKET_ERROR) { if(interrupted()) { goto repeat; } SocketException ex(__FILE__, __LINE__); ex.error = getSocketErrno(); throw ex; } #else if(::read(_fdIntrRead, &c, 1) == -1) { if(interrupted()) { goto repeat; } SyscallException ex(__FILE__, __LINE__); ex.error = getSystemErrno(); throw ex; } #endif return c == 1; // Return true if shutdown has been initiated. } void IceInternal::ThreadPool::setInterrupt(char c) { repeat: #ifdef _WIN32 if(::send(_fdIntrWrite, &c, 1, 0) == SOCKET_ERROR) { if(interrupted()) { goto repeat; } SocketException ex(__FILE__, __LINE__); ex.error = getSocketErrno(); throw ex; } #else if(::write(_fdIntrWrite, &c, 1) == -1) { if(interrupted()) { goto repeat; } SyscallException ex(__FILE__, __LINE__); ex.error = getSystemErrno(); throw ex; } #endif } bool IceInternal::ThreadPool::run() { ThreadPoolPtr self = this; if(_sizeMax > 1) { _promoteMutex.lock(); } while(true) { fd_set fdSet; memcpy(&fdSet, &_fdSet, sizeof(fd_set)); int ret; if(_timeout > 0) { struct timeval tv; tv.tv_sec = _timeout; tv.tv_usec = 0; ret = ::select(_maxFd + 1, &fdSet, 0, 0, &tv); } else { ret = ::select(_maxFd + 1, &fdSet, 0, 0, 0); } if(ret == 0) // We initiate a shutdown if there is a thread pool timeout. { assert(_timeout > 0); _timeout = 0; initiateShutdown(); continue; } if(ret == SOCKET_ERROR) { if(interrupted()) { continue; } SocketException ex(__FILE__, __LINE__); ex.error = getSocketErrno(); throw ex; } EventHandlerPtr handler; bool finished = false; bool shutdown = false; { IceUtil::Mutex::Lock sync(*this); if(FD_ISSET(_fdIntrRead, &fdSet)) { // // There are three possiblities for an interrupt: // // - The thread pool has been destroyed. // // - Server shutdown has been initiated. // // - An event handler was registered or unregistered. // // // Thread pool destroyed? // if(_destroyed) { // // Don't clear the interrupt if destroyed, so that // the other threads exit as well. // return true; } shutdown = clearInterrupt(); if(!shutdown) { // // An event handler must have been registered or // unregistered. // assert(!_changes.empty()); pair change = _changes.front(); _changes.pop_front(); if(change.second) // Addition if handler is set. { _handlerMap.insert(change); FD_SET(change.first, &_fdSet); _maxFd = max(_maxFd, change.first); _minFd = min(_minFd, change.first); continue; } else // Removal if handler is not set. { map::iterator p = _handlerMap.find(change.first); assert(p != _handlerMap.end()); handler = p->second; finished = true; _handlerMap.erase(p); FD_CLR(change.first, &_fdSet); _maxFd = _fdIntrRead; _minFd = _fdIntrRead; if(!_handlerMap.empty()) { _maxFd = max(_maxFd, (--_handlerMap.end())->first); _minFd = min(_minFd, _handlerMap.begin()->first); } // Don't continue; we have to call // finished() on the event handler below, outside // the thread synchronization. } } } else { // // Optimization for WIN32 specific version of fd_set. Looping with a // FD_ISSET test like for Unix is very inefficient for WIN32. // #ifdef _WIN32 // // Round robin for the filedescriptors. // if(fdSet.fd_count == 0) { Error out(_instance->logger()); out << "select() in `" << _prefix << "' returned " << ret << " but no filedescriptor is readable"; continue; } SOCKET largerFd = _maxFd + 1; SOCKET smallestFd = _maxFd + 1; for(u_short i = 0; i < fdSet.fd_count; ++i) { SOCKET fd = fdSet.fd_array[i]; assert(fd != INVALID_SOCKET); if(fd > _lastFd || _lastFd == INVALID_SOCKET) { largerFd = min(largerFd, fd); } smallestFd = min(smallestFd, fd); } if(largerFd <= _maxFd) { assert(largerFd >= _minFd); _lastFd = largerFd; } else { assert(smallestFd >= _minFd && smallestFd <= _maxFd); _lastFd = smallestFd; } #else // // Round robin for the filedescriptors. // if(_lastFd < _minFd - 1 || _lastFd == INVALID_SOCKET) { _lastFd = _minFd - 1; } int loops = 0; do { if(++_lastFd > _maxFd) { ++loops; _lastFd = _minFd; } } while(!FD_ISSET(_lastFd, &fdSet) && loops <= 1); if(loops > 1) { Error out(_instance->logger()); out << "select() in `" << _prefix << "' returned " << ret << " but no filedescriptor is readable"; continue; } #endif assert(_lastFd != _fdIntrRead); map::iterator p = _handlerMap.find(_lastFd); if(p == _handlerMap.end()) { Error out(_instance->logger()); out << "filedescriptor " << _lastFd << " not registered with `" << _prefix << "'"; continue; } handler = p->second; } } assert(handler || shutdown); if(shutdown) { // // Initiate server shutdown. // ObjectAdapterFactoryPtr factory; try { factory = _instance->objectAdapterFactory(); } catch(const Ice::CommunicatorDestroyedException&) { continue; } promoteFollower(); factory->shutdown(); } else { assert(handler); if(finished) { // // Notify a handler about it's removal from the thread // pool. // try { handler->finished(self); // "self" is faster than "this", as the reference count is not modified. } catch(const LocalException& ex) { Error out(_instance->logger()); out << "exception in `" << _prefix << "' while calling finished():\n" << ex << '\n' << handler->toString(); } } else { // // If the handler is "readable", try to read a // message. // BasicStream stream(_instance.get()); if(handler->readable()) { try { read(handler); } catch(const TimeoutException&) // Expected. { continue; } catch(const DatagramLimitException&) // Expected. { continue; } catch(const LocalException& ex) { handler->exception(ex); continue; } stream.swap(handler->_stream); assert(stream.i == stream.b.end()); } // // "self" is faster than "this", as the reference // count is not modified. // handler->message(stream, self); } } if(_sizeMax > 1) { { IceUtil::Mutex::Lock sync(*this); if(!_destroyed) { // // First we reap threads that have been destroyed before. // int sz = static_cast(_threads.size()); assert(_running <= sz); if(_running < sz) { vector::iterator start = partition(_threads.begin(), _threads.end(), mem_fun_ref(&IceUtil::ThreadControl::isAlive)); #if defined(_MSC_VER) && _MSC_VER <= 1200 // The mem_fun_ref below does not work with VC++ 6.0 for(vector::iterator p = start; p != _threads.end(); ++p) { p->join(); } #else for_each(start, _threads.end(), mem_fun_ref(&IceUtil::ThreadControl::join)); #endif _threads.erase(start, _threads.end()); } // // Now we check if this thread can be destroyed, based // on a load factor. // const double loadFactor = 0.05; // TODO: Configurable? const double oneMinusLoadFactor = 1 - loadFactor; _load = _load * oneMinusLoadFactor + _inUse * loadFactor; if(_running > _size) { int load = static_cast(_load + 1); if(load < _running) { assert(_inUse > 0); --_inUse; assert(_running > 0); --_running; return false; } } assert(_inUse > 0); --_inUse; } } _promoteMutex.lock(); } } } void IceInternal::ThreadPool::read(const EventHandlerPtr& handler) { BasicStream& stream = handler->_stream; if(stream.b.size() == 0) { stream.b.resize(headerSize); stream.i = stream.b.begin(); } if(stream.i != stream.b.end()) { handler->read(stream); assert(stream.i == stream.b.end()); } ptrdiff_t pos = stream.i - stream.b.begin(); assert(pos >= headerSize); stream.i = stream.b.begin(); ByteSeq m(sizeof(magic), 0); stream.readBlob(m, static_cast(sizeof(magic))); if(!equal(m.begin(), m.end(), magic)) { BadMagicException ex(__FILE__, __LINE__); ex.badMagic = m; throw ex; } Byte pMajor; Byte pMinor; stream.read(pMajor); stream.read(pMinor); if(pMajor != protocolMajor || static_cast(pMinor) > static_cast(protocolMinor)) { UnsupportedProtocolException ex(__FILE__, __LINE__); ex.badMajor = static_cast(pMajor); ex.badMinor = static_cast(pMinor); ex.major = static_cast(protocolMajor); ex.minor = static_cast(protocolMinor); throw ex; } Byte eMajor; Byte eMinor; stream.read(eMajor); stream.read(eMinor); if(eMajor != encodingMajor || static_cast(eMinor) > static_cast(encodingMinor)) { UnsupportedEncodingException ex(__FILE__, __LINE__); ex.badMajor = static_cast(eMajor); ex.badMinor = static_cast(eMinor); ex.major = static_cast(encodingMajor); ex.minor = static_cast(encodingMinor); throw ex; } Byte messageType; stream.read(messageType); Byte compress; stream.read(compress); Int size; stream.read(size); if(size < headerSize) { throw IllegalMessageSizeException(__FILE__, __LINE__); } if(size > _messageSizeMax) { throw MemoryLimitException(__FILE__, __LINE__); } if(size > static_cast(stream.b.size())) { stream.b.resize(size); } stream.i = stream.b.begin() + pos; if(stream.i != stream.b.end()) { if(handler->datagram()) { if(_warnUdp) { Warning out(_instance->logger()); out << "DatagramLimitException: maximum size of " << pos << " exceeded"; stream.resize(0); stream.i = stream.b.begin(); } throw DatagramLimitException(__FILE__, __LINE__); } else { handler->read(stream); assert(stream.i == stream.b.end()); } } } IceInternal::ThreadPool::EventHandlerThread::EventHandlerThread(const ThreadPoolPtr& pool) : _pool(pool) { } void IceInternal::ThreadPool::EventHandlerThread::run() { bool promote; try { promote = _pool->run(); } catch(const Exception& ex) { Error out(_pool->_instance->logger()); out << "exception in `" << _pool->_prefix << "':\n" << ex; promote = true; } catch(...) { Error out(_pool->_instance->logger()); out << "unknown exception in `" << _pool->_prefix << "'"; promote = true; } if(promote && _pool->_sizeMax > 1) { // // Promote a follower, but w/o modifying _inUse or creating // new threads. // _pool->_promoteMutex.unlock(); } _pool = 0; // Break cyclic dependency. }